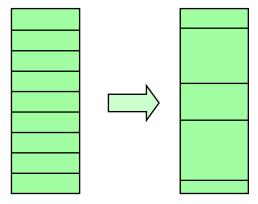
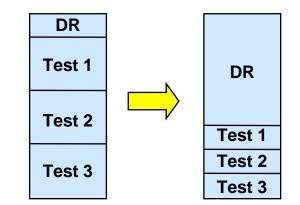


© 2008 IBM Corporation

Increase Utilization

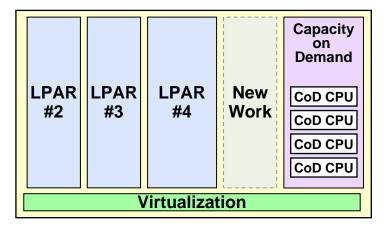

2

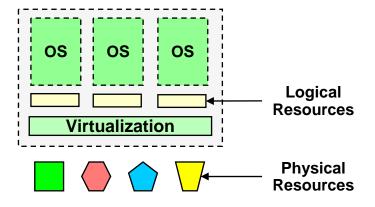

- Non-virtualized servers often run at low average utilizations levels.
- Idle resources on dedicated servers are often not usable
- Virtualized servers can run at high utilization levels and can share resources

Simplify Workload Sizing

- Sizing new workloads is difficult
- LPARs can be resized to match needs
- Can over commit capacity
- Scale up and scale out applications

Repurpose Assets


3

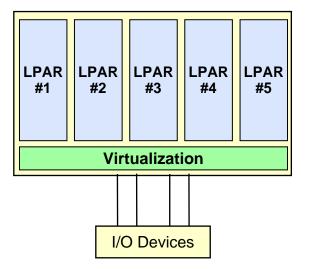

- Scale out servers are usually architected with a specific application in mind.
- Virtualized servers can easily be changed to match a different requirement

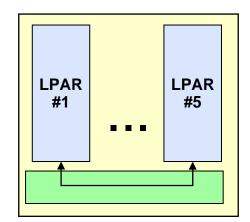
Reduce Limited Use Servers

- DR and/or HA can often be combined with other functions on the same server
- Resizable LPARs allow high volume testing without dedicated equipment

TRM					
	_	_	-	-	-
		_	_	-	-

Rapidly Deploy New Workloads


- New workloads can be added quickly to a virtual pool reducing the time to value
- LPARs can also be de-provisioned when no longer needed
- Capacity on-demand can enhance this capability

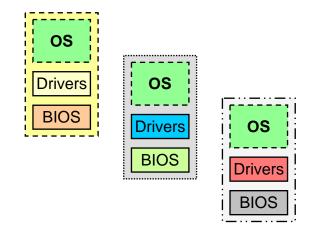

4

Simplify Provisioning

- Virtualized servers have fewer physical dependencies
- Automated provisioning is easier

Reduce I/O Infrastructure

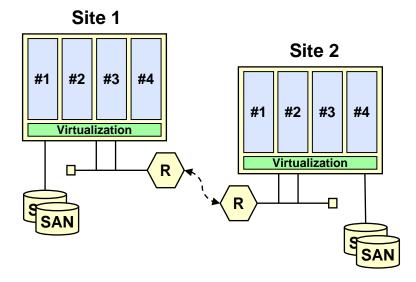
5

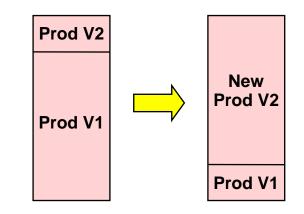

- Shared I/O can reduce the time spent cabling physical servers
- Virtualized I/O can also reduce adapter, port, and wiring costs.

Improve Networking

- Low latency in-the-box communications
- Improved networking security
- Reduced application response time

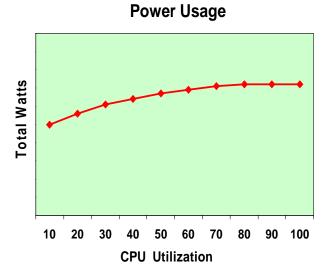
-	-	-	_	_
	-	-		_
	_	-	-	
_	_	_	_	
	_	-	_	


Reduced Asset Management


- Fewer servers to order, install, track, maintain, and retire.
- Reduced floor and rack space

Reduced Server Variation

- Server technology is changing rapidly
- It is very difficult to minimize the number of server models, drivers, BIOS levels, etc.
- Virtualized servers can significantly reduce complexity due to variation


Simplify Disaster Recovery

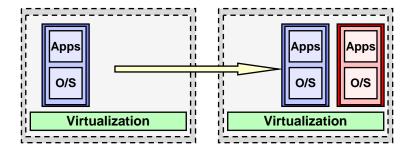
- Virtualized images are easier to re-deploy on different physical hardware
- Non-critical work can be shutdown as required
- Virtual production and virtual DR servers do not have to match exactly

Ease Software Upgrades

- New software versions can be loaded on the same hardware
- When the new version is ready, the LPAR can take over the previous resources
- Allows rapid upgrade and/or fail back

IEM					
lem	_	_	-	_	_
1		_	-	_	_
		_	_	_	

Reduce Power and Cooling


8


- Virtualization allows servers to run at high utilization levels
- Servers running at higher utilization typically use power more efficiently
- Power and cooling costs are expected to become the dominating factor for a 5 year

Reduce Software Costs

- Virtualized servers may lower software costs
- Running at higher utilizations can translate into fewer CPUs to license

Provide Partition/VM Mobility

- Ability to move running LPAR from server to server.
- Improves application availability

9

Future Directions

- Server and network performance continues to grow
- A dedicated model will continue to put more and more unused assets on the floor.

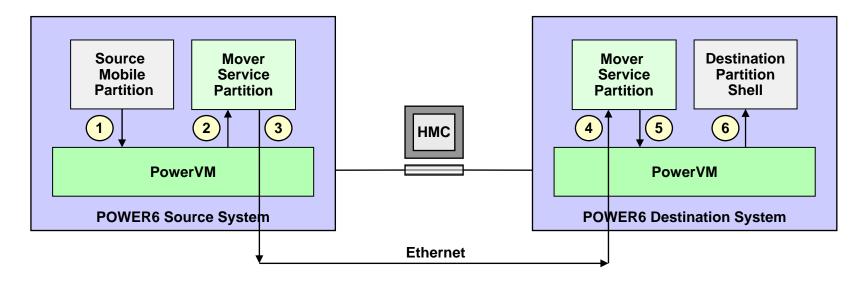
Virtualization - Consider Organizational Changes

Virtualization provides the following benefits:

- Reduced costs hardware, software, people, environmental
- Reduced time to market for business applications
- Improved qualities of service application availability, security, scalability

Organizations may need to change how:

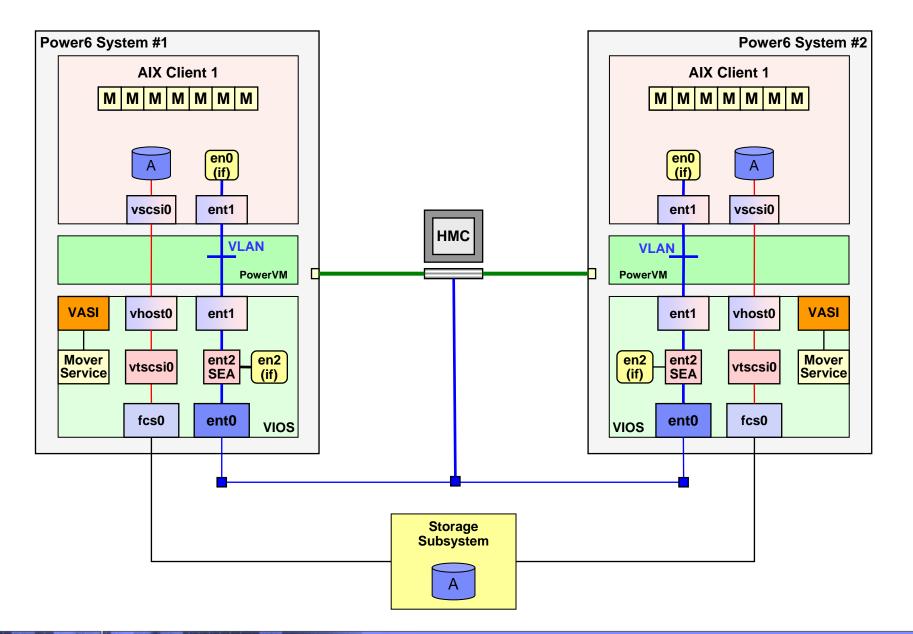
10

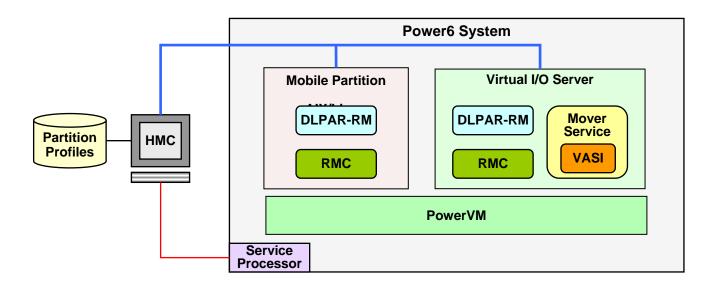

- Equipment is procured acquiring/justifying dedicated servers on a project by project basis is not conducive to virtualization.
- Communication with end users service needs to be framed in terms such as quality of service, response time, capacity, etc. – not hardware configurations.
- Assets owned by IT not tied to a project or business unit.
- Capacity management capacity needs to be monitored / managed as part of shared organizational resource

Live Partition Migration

11

IEM					
lem	_	_	-	_	_
	-		_	_	_
		_	-		


Live Partition Mobility Steps


- The HMC creates a compatible partition shell on the destination system
- The HMC configures the mover service partitions on the source and destination systems
- The HMC issues a prepare for migration event to the source operating system
- The HMC creates the necessary virtual SCSI devices in the destination system's VIOSes
- The source mover starts sending partition state to the destination mover
- Once sufficient pages have moved, the Hypervisor suspends the source partition
- During the suspension, the source mover partition continues to send partition state information
- The mobile partition resumes execution on the destination server
- The destination partition retries all pending I/O requests that were not completed
- When the destination mover partition receives the last memory page the migration is complete

Live Partition Mobility

Live Partition Mobility Components

Hardware Management Console (HMC)

Central point of control for migration

Resource Monitoring and Control (RMC)

A distributed framework and architecture that allows the HMC to communicate with a managed logical partition

Dynamic LPAR Resource Manager

14

HMC uses this capability to remotely execute partition specific commands.

- Virtual Asynchronous Services Interface (VASI)
 - Used by the mover service to communicate with the Hypervisor

Mover service partition

- Function that asynchronously extracts, transports, and installs partition state
- Not used for inactive migrations

Virtual I/O Server (VIOS)

Only virtual devices can be migrated

Live Partition Mobility Requirements

Live Partition Mobility Requirements

- The source and destination servers must be POWER6
- The mobile partition must be
 - AIX 5L Version 5.3 Technology Level 7 or later, AIX Version 6 or later
 - Red Hat Enterprise Linux Version 5 (RHEL5) Update 1 or later
 - SUSE Linux Enterprise Services 10 (SLES 10) Service Pack 1 or later.
 - Both the source and destination systems must be at firmware level eFW3.2 or later
 - Virtual I/O Server at release level 1.5 or higher
- A VIOS must be defined on each system with the move partition attribute set to TRUE and a VASI device defined and configured.
- Network connectivity to source and destination partitions (via the VIOS), source and destination VIOSes, source and destination mover partitions and HMC must exist.
- No required or physical I/O devices
- All disks (O/S and applications) must be defined using external PV-VSCSI disks
- The logical memory block size must be the same on the source and destination server.
- The mobile partition must not be using huge pages
- The mobile partition must not be configured with barrier synchronization registers
- The mobile partition name must not already be in use on the destination system.
- Adequate processors, memory, and virtual slots must be available on the destination system
- The destination VIOSes must have access to all the LUNs used by the mobile partition.

