
Brian May
IBM i Modernization Specialist

Profound Logic Software

Overview
� Experiences

� Concentrating on “Things” not “Files”

� Complex Data Structures

� Organizing Service Programs and Subprocedures

� Advantages

Learn from my mistakes

My First Procedure
� First RPG Job

� 2001

� Packaged software and custom systems

� Old code bases going back to RPGIII

� V4R5

� Learned to write applications in outdated ways

My First Procedure
� Burned out

� Mundane, repetitive work

� Considered quitting/leaving platform

� Created first service program (“GENSRVPGM”)

� Created for generic utilities

� Formatting Data

� String Processing

� No more work to implement than normal

Thinking About “Things”
� Project to build entirely new raw materials system

� Receiving

� Inventory Tracking

� Consumption

� Costing

� All file access and business logic in Service Program

� One service program for whole raw materials system

� Data passed back to program as DS based on record formats

� Worked pretty well, but not as elegant as I thought

Thinking About “Things”
� After several projects, I developed what worked for me

� Object Oriented Mindset

� RPG is not an OO language

� The ILE environment allows us to implement the most
common elements of OO design

� Treat your data as a “thing”

� Don’t concentrate too much on files at design time

� Identify things and actions

How to Build a “Thing”
� Example: Order Entry System

� Thing: Purchase Order

� Create a Service Program

� 1 Thing = 1 Service Program

� Helps with organization

� Prevents accessing “global” data as a shortcut

� Use a binding directory to simplify compiles

� Use a copybook for definitions and prototypes

How to Build a “Thing”
� Define what data your thing has

� Purchase Order

� Key info

� Customer info

� Order Lines

� Create a complex data structure to represent your
“Thing”

� Don’t try to include everything!

� Just include the most commonly used info

� Create procedures to work with less used info separately

How to Build a “Thing”

How to Build a “Thing”
� File structure

� New or Existing

� Map it out

How to Build a “Thing”
� Create subprocedures for your actions

� Create procedures to build your “thing” and to save it

� Pass your “Thing” Data Structure as a parameter to any
procedures with business logic

� Think of the Data Structure as your “instance” of the “thing”

� If procedure will only use/modify one of the underlying
data structures, it is ok to just pass it

How to Use a “Thing”
� Use “action” subprocedures

� DO NOT access the database files directly
� Defeats the purpose

� Program will actually have no file specs for tables

� Use same names in Displays / Print Files
� Use data structures for all File I/O
� Allows EVAL-CORR to reduce code

� If you call another program that needs the “Thing”, pass it
as a parameter. Don’t build the object again in called
program.

Advantages
� Using this “object” approach will:

� Reduce File I/O

� No need to retrieve the same data in every program or
procedure

� File I/O is one of the slowest parts of an application

� Reduce Code

� Removing file access from individual programs and
centralizing it greatly reduces the amount of code

� Much more digestible

Advantages
� Allows for an extra layer of separation of data from

program

� Offers more security options

� Removes clutter of business rules from programs

� Business Rule procedures become “black boxes”

� Easy to test

� Once tested and stable, developers don’t have to know or care
exactly how the business logic works.

� Makes changes of business rules a breeze

Application Modernization

About the Presenter

Brian May is an IBM i Modernization Specialist for Profound Logic
Software. He has also served as webmaster and coordinator for the
Young i Professionals (http://www.youngiprofessionals.com). He is a
husband and father of two beautiful girls. Brian can be reached at
bmay@profoundlogic.com

