
Testing Tips and Tricks 
for Programmers

Pragmatic and Practical Testing 
Yvonne Enselman, CTFL, CTAL-TA



Practical Testing
• Effective: producing a decided, decisive, or 

desired result 

• Efficient: productive of the desired effect; 
especial to be productive without waste 

• Avoid redundancy 

• Reduce cost 



What Testing Isn’t

• Proof that there are no bugs 

• Proof that all defects have been found



Judy McKay: 
“We have to be sure that we don’t compound 

this misconceptions that testing can prove 
the absence of defects or can discover all 
defects by publishing testing metrics with 
statements like ‘100 percent test coverage 

[achieved].’ Just because we ran 100 
percent of our test cases doesn’t mean that 
we’ve covered 100 percent of what the code 
could do. We need to be sure our information 

is accurate, supportable, and 
understandable.”



We’re lost but we are making 
good time

• Test Oracle: What we expect, what should result, 
what we measure against 

• Testing is any activity aimed at evaluating an 
attribute or capability of a program or system 
and determining it meets required results 

• A good tester expects to find bugs because all 
programs have bugs, a good tester expects to 
find defects because all systems contain them.



Risk Management
• Features: Will the system provide the right 

capabilities 

• Schedule: Will you deploy or release the system 
soon enough 

• Budget: Will the overall effort or project make 
financial sense 

• Quality: Will the system you create satisfy the 
users, customers, Stakeholders



Mitigating and Identifying 
Risk

• Identification of Risk Categories 

• Understanding Test Techniques 

• Performing Risk Analysis



Test Techniques
• Static Testing: Testing the system without actually 

running the system, based on project artifacts. 

• White-Box Testing: Testing how the system works 
internally, how it’s built, and its structural 
characteristics. 

• Black-Box Testing: Testing what the system does, 
particularly its behaviors and the business 
problems it solves.



Quality Risk Categories 
Functionality 

performance and reliability 

Stress, capacity, and volume 

States 

Transitions 

Installation and deinstallation 

Operations 

Maintenance and Maintainability 

Regression 

Usability and user interface 

Data Quality 

Errors and disaster handling and recovery 

Date and time handling 

Localization 

Configuration and compatibility 

Networked, inter networked, and 
distributed 

Standards and regulatory compliance 

Security 

Timing and coordination 

Documentation



Risk Analysis
• Determine what risks are evident 

• Assign importance based on Business exposure 
and Technical exposure 

• Decide what risks need which level of testing 

• Use requirements and specifications 

• Cross Team contributions and input are very 
valuable



In a Traditional Waterfall or V development 
methodology it might look like….

• Requirements Phase = Quality Risk Analysis 

• After design specification update QRA 

• Review the technical risks when implementation 
is complete 

• Update ratings as Unit, Integration, and System 
testing begins



Equivalence Classes and 
Boundary Values

• Equivalence Class Partitioning: Identify the inputs, 
outputs, behaviors, environments, and/or any 
other testing items. Group all factors into classes 
that the systems should handle in a given way. 

• Boundary Value Analysis: A boundary is where the 
test object’s behavior will change. Especially 
when Greater Than, Less Than, Equal to are used 
in conjunction with each other or complicated 
algorithms.



Use Cases, Live Data, & 
Decision Tables

• Use case & Scenario Tests: Design cases that 
reflect the real world processing or anticipated 
performance of the test object. 

• Live Data and Customer Testing: The above is 
what the system should do, this tests what the 
system actually does. 

• Decision Tables: Translation of business rules into 
test cases, especially when multiple factors impact 
the behavior of the test object or interactions.



State Transition Diagrams

• Determine viewpoint, understand all states the 
test object can transition through, identify what 
can and can’t apply in each state, graph or 
model the system, determine the behavior of the 
test object in each state.



Structural Testing

• Control - Flow 

• Data - Flow 

• Integration Testing



Control Flow Testing
• Control Flow - the sequence of execution of statements 

• Statement Coverage: You achieve 100% statement coverage when you have exercised 
every statement. 

• Branch or Decision Coverage: You achieve 100% coverage when you have taken every 
branch each way. 

• Condition Coverage: You achieve 100% coverage when the multiple conditions that direct 
behavior have been evaluated both true and false 

• MultiCondition Coverage: When compound conditions apply to branching, you can move 
beyond condition coverage to multi condition coverage by requiring testing all possible 
combinations of conditions. 

• Loop Coverage: In loop paths iterate each loop 0, 1, and multiple times. Ideally you can 
identify the maximum iterations and test to that boundary and past. 

• Path Coverage: You achieve 100% coverage when you have taken all possible control paths



Data-Flow Testing

• Analyzation of the data progressing through the 
test object or process



Integration Testing
• Drivers and Stubs: Parts of the system that 

interacts isn’t ready and needs to be simulated 

• Integration Techniques: Isolating the 
components under test via a test environment 
can isolate the factors in the build. 

• Backbone Integration: Using business based 
risk analysis processes are monitored through 
the entire system


