
SQL Beyond the Basics

Jerome Hughes
Sr. Developer, MKS Software, Inc.

http://www.mks.com
Omni Technical Conference 2007

Beyond the Basics

n What basics?
n Just the most basic of queries
n The sort of statement usually issued “ad-hoc” and left behind

n SELECT * FROM library/file WHERE field = ‘value’
n SELECT * FROM collection/table WHERE column = ‘value’

n What’s good about these basics?
n Fill a need when created
n Way easier than writing an equivalent program

n What’s not so good about these basics?
n Scroll away upward, using STRSQL
n Always starting over, more trouble to find it

n So, how can we move beyond this?

SQL strategies

n To become fluent in a new language, it’s best to build on
what’s been learned beforehand

n To build on what’s been learned beforehand, it’s easiest if
your previous attempts are easily available for review

n So... save your queries, giving them names and
descriptions, adding comments and managing them just
like you do your RPG programs

n The first tool most System i programmers used for SQL was
STRSQL, which is cumbersome for this, so it’s less than “natural”
for most

n There are many ways to accomplish this, but it’s important to
choose one or more and...

n Stop letting your simpler queries scroll up into oblivion!
n Keep ‘em around to use when building more complex queries

That simple query...

n Type it faster than find it
n But is it, really?
n Is it adjusted and rerun, and what about next time?

n SELECT orddat, order, amount FROM orders WHERE
orddat BETWEEN 20070101 and 20070227

n What’s here that might be reusable?
n Save it by subject, with a name like OrderDateRange
n Then it can be found and adapted to a new name and purpose

n SELECT orddat, count(*), sum(amount)
FROM orders
WHERE orddat BETWEEN 20070101 and 20070227
GROUP BY orddat
ORDER BY orddat

Recipes you can mix together!

n In source containers named for subject and/or purpose,
drop any misfires, copy forward successes, commenting!

n Keep what works around for quick reuse and adaptation
n SQL queries (on their own) are a non-procedural

language where you specify what you want and let the
database figure out how to retrieve it

n Becoming adept with applying more complicated SQL
queries is good preparation for learning to write
programs that make use of SQL queries

n When writing SQL programs, they’ll be stored in source
files, so why wait, accelerate!

Simple SELECT statement

n SELECT * FROM jhughes/orders
n save it as “orders”
n then comment, copy and adapt

n -- SELECT * FROM jhughes/orders
SELECT orddat, order, amount
FROM jhughes/orders
WHERE orddat BETWEEN 20070101 AND 20070227
ORDER BY orddat, order

n follow consistent case rules for readability break lines when new
SQL keywords encountered

n comment lines to “turn them off/on” (cut/paste, editor cmds)
n copy and adjust lines to adapt statements

SELECT with JOIN

n SELECT a.orddat, a.order, a.custid,
b.item, b.quantity, b.price, b.quantity * b.price lineExt
FROM jhughes/orders a
JOIN jhughes/orderLines b
ON a.order = b.order
WHERE orddat BETWEEN 20070101 AND 20070227
ORDER BY orddat, order

n correlations “a” and “b” qualify fields to files
n calculation name can be overridden after declaration
n give it a name like “orderLines”

EXCEPTION JOIN

n SELECT a.order, a.line, a.quantity, a.item, a.price
FROM jhughes/orderLines a
EXCEPTION join jhughes/order b
ON a.order = b.order

n returns order lines without a matching order header

LEFT OUTER JOIN

n SELECT a.orddat, a.order, a.custid,
b.item, b.quantity, b.price, b.quantity * b.price lineExt
FROM jhughes/orders a
JOIN jhughes/orderLines b
ON a.order = b.order

n does not return order without lines
n SELECT a.orddat, a.order, a.custid,

b.item, b.quantity, b.price, b.quantity * b.price lineExt
FROM jhughes/orders a
LEFT OUTER JOIN jhughes/orderLines b
ON a.order = b.order

n returns order without lines, with null values in line fields

GROUP BY for summaries

n SELECT item, sum(quantity)
FROM jhughes/orderLines
GROUP BY item
ORDER BY item

n summarizes by GROUP BY column(s)
n so all other columns must be aggregated or errors
n start with grouped columns, add aggregated columns
n start with grouping and ordering alike
n min() or max() can get only value when all in a group match, like

an order line item description might here
n other aggregators include avg(), count(*)

GROUP BY for ranking

n SELECT item, sum(quantity) qtySold
FROM jhughes/orderLines
GROUP BY item
ORDER BY qtySold DESC

n show biggest sellers first with DESC
n SELECT item, sum(quantity) qtySold

FROM jhughes/orderLines
GROUP BY item
HAVING qtySold > 500

n ORDER BY qtySold DESC
n establish a floor on the summary with HAVING
n like a post-GROUPing WHERE clause

WHERE clause variations

n BETWEEN column/value AND column/value
n IN(value, value, value...)
n IN(SELECT column FROM table WHERE...)
n LIKE ‘string%’ (% = any number of chars)
n LIKE ‘string_’ (_ = any one character)
n IS NULL (not “= NULL”)
n NOT flips any of these

Counting and sampling

n SELECT state, count(*)
FROM jhughes/orders
WHERE orddate between 20070101 AND 20070227
GROUP BY state
ORDER BY count(*) DESC

n shows distribution of records by code
n SELECT *

FROM jhughes/orders a
WHERE MOD(RRN(a),100)=0

n shows every 100th row (assuming even distribution)

UNION combines multiple SELECTs

n SELECT class, item FROM jhughes/itemClassA
WHERE class LIKE ‘A%’
UNION
SELECT class, item FROM jhughes/itemClassB
WHERE class LIKE ‘B%’
ORDER BY class, item

n returns records from both SELECTS in one result
n each SELECT gets its own WHERE clause
n one ORDER BY clause for entire construct
n field list types must match across SELECTs
n first SELECT determines naming
n fields can be sourced from anywhere

CASE gets procedural in SELECT

n SELECT key, name,
CASE code
WHEN ‘A’ THEN ‘After’
WHEN ‘B’ THEN ‘Before’
END
FROM table...

n allows expansions of codes, etc.
n can also be done with conditionals, like...

CASE with conditions

n SELECT key, name,
CASE WHEN colval < 10 THEN ‘singledigit’
 WHEN colval < 100 THEN ‘doubledigits’
 ELSE ‘hundredsormore’ END
FROM table...

n allows labeling of ranges, etc.

Subqueries for selection

n SELECT order, amount
FROM orders
WHERE amount >
 (SELECT AVG(amount) FROM orders)

n returns above average orders
n SELECT customer, order, amount

FROM orders
WHERE customer IN
 (SELECT customers FROM topcusts)

n selects only order from customers listed in topcusts

Finding missing references

n SELECT a.*
FROM orderLines a
WHERE NOT a.order IN
 (SELECT b.order FROM orders b)

n shows only those lines not attached to orders
n SELECT a.*

FROM orders a
WHERE NOT a.order IN
 (SELECT DISTINCT b.order FROM orderLines b)

n shows only those orders without lines

Queries that change things

n When moving beyond SELECT to UPDATE and DELETE
n Test WHERE clauses first using SELECTs
n Prove your test results are satisfactory first!

n Run to a file, then query to prove it matches
n When ready, run first on test copy of data
n After testing, back up what will change first!
n Create and document your plan with comments/notes

n Verify your plan, and protect your assets!

Updating related records

n Use caution, do it on test copies first, etc.
n Here’s the template for doing one...

n keys must specify unique records
n may be compound keys concatenated
n use CHAR(column) to concatenate numeric keys

n UPDATE tablea a SET a.updatecolumn =
 (SELECT b.value FROM tableb b
 WHERE b.key = a.key)

n WHERE a.key =
n (SELECT b.key FROM tableb b

 WHERE b.key = a.key)

Trying it out on a customer table

n cusmas and cusnew were the same
n both are keyed by cusnbr
n changes made to cusnew’s cuscls are needed in cusmas
n start by SELECTing the target set
n SELECT a.cusnbr, a.cusnam, a.cuscls, b.cuscls

FROM cusmas a
JOIN cusnew b
ON a.cusnbr = b.cusnbr
WHERE a.cuscls <> b.cuscls

n shows record key, description, old and new classes
n proves correct records will be adjusted as desired

Before you go do it

n Be sure you have the right records verified
n Make a copy of the data
n Run it against that copy
n Check that it worked
n Make a backup of what you’re going to change
n Be careful and document, then read what was written!

Scalar Subselect

n UPDATE cusmas a SET a.cuscls =
 (SELECT b.cuscls FROM cusnew b
 WHERE b.cusnbr = a.cusnbr)
WHERE a.cusnbr =
 (SELECT b.cusnbr FROM cusnew b
 WHERE b.cusnbr = a.cusnbr)

n prove this works on a subset and it will save a lot of time on
processing a large table which needs updating by key!

Embedding SQL in RPG programs

n All SQL statements must be delimited by
/EXEC SQL and /END-EXEC statements

n Source is compiled with CRTSQLRPG command
n SQL statements are first evaluated by SQL precompiler
n At execution time, errors are returned in SQLCOD

n don’t define this, it will just be there
n Opening access path
n First declare a cursor to manage the path

n C/EXEC SQL
n C DECLARE CURSOR c1 FOR SELECT * FROM table1
n C/END-EXEC
n execution of this code establishes the access path

Retrieving a row

n “Read” a record from the path with a FETCH statement
n C/EXEC SQL
n C FETCH c1 INTO :dsname
n C/END-EXEC

n :dsname is a data structure field for SELECT clause
record image

n use an external DS to pull in columns
n access data structure subfields to use data

Check state and close

n SQLSTT & SQLCOD are automatically included
n don’t need to be defined

n 0 = ok, other codes denote EOF, errors
n SQLSTT IFEQ 0
n EXSR PROCESS
n ENDIF

n close the path with a CLOSE cursor-name
n C/EXEC SQL
n C CLOSE c1
n C/END EXEC

SQL Trigger example 1

n CREATE TRIGGER new_hire
 AFTER INSERT ON employee
 FOR EACH ROW MODE DB2SQL
 UPDATE company_stats SET nbemp = nbemp + 1

n CREATE TRIGGER former_employee
 AFTER DELETE ON employee
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 UPDATE company_stats SET nbemp = nbemp - 1;
 END

n together keeping a count of employees updated

SQL Trigger example 2

n CREATE TRIGGER reorder
 AFTER UPDATE OF onhand, max_stocked ON parts
 REFERENCING NEW_TABLE AS ntable
 FOR EACH STATEMENT MODE DB2SQL
 BEGIN ATOMIC
 SELECT issue_ship_request(max_stocked - on_hand,
 partno)
 FROM ntable
 WHERE on_hand < 0.10 * max_stocked;
 END

n only runs once per statement, finds rows where stock is low and
runs UDF issue_ship_request for each one

SQL Trigger example 3

n CREATE TRIGGER sal_adj
 AFTER UPDATE OF salary ON employee
 REFERENCING OLD AS old_emp
 NEW AS new_emp
 FOR EACH ROW MODE DB2SQL
 WHEN (new_emp.salary > old_emp.salary * 1.2))
 BEGIN ATOMIC
 SIGNAL SQLSTATE ‘75001’ (‘Invalid Salary Increase
 exceeds 20%’);
 END

n checks and waives off transaction when outside limit

SQL Stored Procedure example

n CREATE PROCEDURE update_salary_1
 (IN employee_number CHAR(10),
 IN rate DECIMAL(6,2))
 LANGUAGE SQL MODIFIES SQL DATA
 UPDATE corpdata.employee
 SET salary = salary * rate
 WHERE empno = employee_number

n declares parameters and runs statement with columns & parms
n expand beyond single statement with SQL control statements

n CALL, CASE, FOR, IF, ITERATE, LEAVE,
LOOP, REPEAT, RETURN, WHILE

n run from client or with SQL CALL from another procedure

Get help with it...

n check out http://www.midrange.com
n email me directly at...

n jromeh@aol.com
n jromeh@comcast.net

n will be glad to try to help when there’s time
n it’s always good to have a sounding board

n thanks to the many folks who have served in this role for me!

http://www.midrange.com
http://www.midrange.com
mailto:jromeh@aol.com
mailto:jromeh@aol.com
mailto:jromeh@comcast.net
mailto:jromeh@comcast.net

