
Providing RPG Web Services

Presented by

Scott Klement
http://www.scottklement.com

© 2012-2016, Scott Klement

"A computer once beat me at chess, but it was no match
for me at kick boxing." — Emo Philips

on IBM i

2

Our Agenda

1. Introduction
• What's a web service?
• Why web services?
• Types (REST/SOAP/XML/JSON)

2. SOAP web service with IBM's IWS

3. REST web service with IBM's IWS

4. Writing your own from the ground-up with
Apache.

5. Discussion/wrap-up

Agenda for this session:

3

I am a Web Service. What Am I?

• A callable routine. (Program? Subprocedure?)
• Callable over a TCP/IP Network. (LAN? Intranet? Internet?)

….can also be called from the same computer.
• Using the HTTP (or HTTPS) network protocol

A routine that can be called over a TCP/IP network.

Despite the name, not necessarily "web"
• different from a "web site" or "web application"
• input and output are via "parameters" (of sorts) and are for programs to

use. No user interface -- not even a browser.
• can be used from a web application (just as an API or program could)

either from JavaScript in the browser, or from a server-side
programming language like RPG, PHP, .NET or Java

• but is just as likely to be called from other environments… even 5250!

4

Write Once, Call From Anywhere

In other words… Services Oriented Architecture (SOA).
• Your business logic (business rules) are implemented as a set of

"services" to any caller that needs them.
• Web services are only one of many ways to implement SOA. Don't

believe the hype!

Callable from anywhere
• Any other program, written in (just about) any language.
• From the same computer, or from another one.
• From the same office (data center), or from another one.
• From folks in the same company, or (if desired) any of your business

partners. Even the public, if you want!

RPG can function as either a provider (server) or a consumer (client)
…this session focuses on providing.

5

What is a Web Service?

• Very similar in concept to the CALL command.
CALL PGM(EXCHRATE) PARM('us' 'euro' &DOLLARS &EUROS)

• Runs over the Web, so can be called from programs on
other computers anywhere in the world.

• Maybe a web front-end?

• (Java, .NET, PHP, JavaScript framework, even another RPG.)

• Maybe a thick-client program (windows program, mobile
app, etc.)

A “program call” (or subprocedure call) that
works over the Web.

6

To be called from a program

• Web services do not display a screen, or prompt a user

• All input comes from “parameter” data.

• All output is sent via “parameter” data

• Often referred to as an “API”

Designed to be called from other programs,
instead of interfacing directly with the user.

7

How Do They Work?

HTTP starts with a request for the server
• Can include a document (XML, JSON, etc)
• Document can contain "input parameters"

HTTP then runs server-side program
• input document is given to program
• HTTP waits til program completes.
• program outputs a new document (XML, JSON, etc)
• document contains "output parameters"
• document is returned to calling program.

8

REST vs SOAP

SOAP: "Simple Object Access Protocol"
The "old" way. Not as common anymore, but has some advantages.

• URL identifies the web services server
• Input/output documents are always XML in SOAP format
• The “verb” (or action to perform) is given in a separate “soap-action” keyword.
• An accompanying WSDL document describes the SOAP details, including

networking details and schema
• Much more complex than REST, but…
• Many more tools are available (vs REST) which can make SOAP easier to

code than REST.

REST: "REpresentative State Transfer"
The "new" way. Most new web services use this method.

• URL identifies a “resource” to work with.
• Input/output documents may be in any format. (Most commonly XML or JSON)
• Often, all input is within the URL
• Technically, the HTTP method should be the “verb” (type of action to take), but

many web services do not use this approach, and still refer to themselves as
REST

• Much simpler/runs faster than SOAP.

9

XML vs. JSON

Both XML and JSON are widely used in web services:
• Self-describing
• Can make changes without breaking compatibility
• Available for all popular languages / systems

XML:
• Has schemas, namespaces, transformations, etc.
• Has been around longer.
• Only format supported in SOAP

JSON:
• Natively supported by all web browsers
• Results in smaller documents (means faster network transfers)
• Parses faster.

10

JSON is "Taking Over"

In a 2013 study done by the ProgrammableWeb (web service directory and
community), we can see JSON growing while XML is declining.

As a percentage of the overall directory (left) XML is higher, but it's close.

For new APIs, JSON is much higher

11

JSON and XML to Represent a DS

[
{

"custno": 1000,
"name": "ACME, Inc"

},
{

"custno": 2000,
"name": "Industrial Supply Limited"

}
]

<list>
<cust>

<custno>1000</custno>
<name>Acme, Inc</name>

</cust>
<cust>

<custno>2000</custno>
<name>Industrial Supply Limited</name>

</cust>
</list>

D list ds qualified
D dim(2)
D custno 4p 0
D name 25a

Array of data structures
in RPG…

Array of data structures
in JSON

Array of data structures
in XML

12

Without Adding Spacing for Humans

[{"custno": 1000,"name": "ACME, Inc"},{"custno": 2000,
"name": "Industrial Supply Limited"}]

<list><cust><custno>1000</custno><name>ACME, Inc</name
></cust><cust><custno>2000</custno><name>Industrial S
upply Limited</name></cust></list>

92 bytes

142 bytes

In this simple "textbook" example, that's a 35% size reduction.

50 bytes doesn't matter, but sometimes these documents can be
megabytes long – so a 35% reduction can be important.

…and programs process JSON faster, too!

13

IBM's Integrated Web Services Server

IBM provides a Web Services tool with IBM i at no extra charge!

The tool takes care of all of the HTTP and XML work for you!

It's called the Integrated Web Services tool.
http://www.ibm.com/systems/i/software/iws/

• Can be used to provide web services
• Can also be used to consume them -- but requires in-depth knowledge of

C and pointers -- I won't cover IBM's consumer tool today.

Requirements:
• IBM i operating system, version 5.4 or newer.
• 57xx-SS1, opt 30: QShell
• 57xx-SS1, opt 33: PASE
• 57xx-JV1, opt 8: J2SE 5.0 32-bit (Java)
• 57xx-DG1 -- the HTTP server (powered by Apache)

Make sure you have the latest cum & HTTP Sever group PTFs installed.

14

Let's Get Started!

The HTTP server administration tool runs in a
special HTTP server called *ADMIN, and you
use it from your browser.

• If this isn’t already started, you can start it with:
STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

• Point browser at:
http://your-system:2001/

• Sign-in

• Click “Internet Configurations” (if IBM i 6.1 or higher)

• Click “IBM Web Administration for i"

15

IBM Navigator for i

Click "Internet
Configurations"

16

Internet Configurations

IBM Web
Administration for i

17

Web Administration for i

The IWS is under
"Create New Web
Services Server"

The same link is up
here as well – and

is available
throughout the tool

from this link.

18

Create IWS Server (1 of 4)

Version 2.6 has both REST and
SOAP support.

Version 1.5 is here for backward
compatibility if you already have

made older SOAP services. (It
doesn't support REST.)

19

Create IWS Server (2 of 4)

Server name is used to generate
stuff like object names, so must
be a valid IBM i object name (10

chars or less.)

Description can be whatever you
want… should explain what the

server is to be used for.

20

Create IWS Server (3 of 4)

Here you choose the userid that
the web services server (but not

necessarily your RPG
application) will run under.

The default will be the IBM-
supplied profile QWSERVICE.

But you can specify a different
one if you want. This user will

own all of the objects needed to
run a server that sits and waits

for web service requests.

21

Create IWS Server (4 of 4)

This last step shows a summary
of your settings.

It's worth making a note of the
Server URL and the Context Root

that it has chosen.

22

We Now Have a Server!

It takes a few seconds to build,
but soon you'll have a server, and

see this screen.

To get back here at a later date,
click on the "Manage" tab, then
the "Application Servers" sub-

tab, and select your server from
the "server" drop-down list.

23

Now What?

Now that we have a web services server, we can add (or
"deploy" is the official term) web services… i.e.
programs/subprocedures that can be called as web
services.

• One server can handle many services
(programs/procedures)

• The same server can handle both REST and SOAP
services (version 2.6+)

• IBM provides a "ConvertTemp" service as an example.

The "manage deployed services" button can be used to
stop/start individual services as well as add/remove them.

24

SOAP Web Services

• Always XML (you could have a different "payload", but it'd be embedded in
XML under the covers)

• SOAP is the XML format for the "parameters" when making a call

• URL and SoapAction HTTP header define the program to call.

• WSDL document describes the details (contains network info as well as an
XML schema)

To understand Web Services Description Language (WSDL), think "how would
you tell the world"?

• Documentation? (Word Doc, PDF, etc?)

• Sample programs?

• Or… info that can be used to generate programs?

25

WSDL Skeleton

<definitions>

<types>
definition of types........

</types>

<message>
definition of a message....

</message>

<portType>
definition of a port.......

</portType>

<binding>
definition of a binding....

</binding>

<service>
a logical grouping of ports...

</service>

</definitions>

<types> = the data types that
the web service uses.

<message> = the messages
that are sent to and received

from the web service.

<portType> = the operations
(or, “programs/procedures” you

can call for this web service.

<binding> = the network
protocol used.

<service> = a grouping of
ports. (Much like a service

program contains a group of
subprocedures.)

26

SOAP

SOAP = Simple Object Access Protocol

SOAP is an XML language that describes the parameters that you pass to the
programs that you call. When calling a Web service, there are two SOAP
documents -- an input document that you send to the program you're calling, and
an output document that gets sent back to you.

"Simple" is perhaps a misnomer!

• Not as simple as RPG parameter lists.
• Not as simple as REST

27

SOAP Skeleton

<soap:Envelope xmlns:soap="http://www.w3.org/2001/1 2/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap- encoding" >

<soap:Header>
(optional) contains header info, like payment info or authentication info

(crypto key, userid/password, etc)
</soap:Header>

<soap:Body>
. . .
Contains the parameter info. (Varies by application .)
. . .
<soap:Fault>

(optional) error info.
</soap:Fault>
. . .

</soap:Body>

</soap:Envelope>

Here's the skeleton of a SOAP message:

28

Sample SOAP Documents

<soapenv:Envelope>
<soapenv:Body>

<xsd:getcust>
<xsd:args0>

<xsd:CUSTNO>495</xsd:CUSTNO>
</xsd:args0>

</xsd:getcust>
</soapenv:Body>

</soapenv:Envelope>

Some details removed for brevity….

<soapenv:Envelope>
<soapenv:Body>

<ns:getcustResponse>
<ns:return>

<ns:CITY>POMPANO BEACH</ns:CITY>
<ns:NAME>ACME INC</ns:NAME>
<ns:POSTAL>33064-2121</ns:POSTAL>
<ns:STATE>FL</ns:STATE>
<ns:STREET>123 MAIN STREET</ns:STREET>

</ns:return>
</ns:getcustResponse>

</soapenv:Body>
</soapenv:Envelope>

In
pu

t M
es

sa
ge

O
ut

pu
t M

es
sa

ge

29

GETCUST RPG Program (1 of 2)

H DFTACTGRP(*NO) ACTGRP('SOAP') PGMINFO(*PCML: *MOD ULE)

FCUSTFILE IF E K DISK PREFIX('CUST. ')

D CUST E DS qualified
D extname(CUSTF ILE)

D GETCUST PR ExtPgm('GETCU ST')
D CustNo like(Cust.Cus tno)
D Name like(Cust.Nam e)
D Street like(Cust.Str eet)
D City like(Cust.Cit y)
D State like(Cust.Sta te)
D Postal like(Cust.Pos tal)
D GETCUST PI
D CustNo like(Cust.Cus tno)
D Name like(Cust.Nam e)
D Street like(Cust.Str eet)
D City like(Cust.Cit y)
D State like(Cust.Sta te)
D Postal like(Cust.Pos tal)

PCML with parameter
info will be embedded

in the module and
program objects.

When there's no P-spec,
the PR/PI acts the same as

*ENTRY PLIST.

This PREFIX causes the
file to be read into the

CUST data struct.

30

GETCUST RPG Program (2 of 2)

/free
chain CustNo CUSTFILE;
if not %found;

msgdta = 'Customer not found.';
QMHSNDPM('CPF9897': 'QCPFMSG *LIBL'

: msgdta: %len(msgdta): '*ESCAPE'
: '*PGMBDY': 1: MsgKey: err);

else;
Custno = Cust.Custno;
Name = Cust.name;
Street = Cust.Street;
City = Cust.City;
State = Cust.State;
Postal = Cust.Postal;

endif;
*inlr = *on;

/end-free

This API is equivalent
to the CL

SNDPGMMSG
command, and

causes my program
to end with an

exception ("halt")

When there are no
errors, I simply return

my output via the
parameter list. IWS

takes care of the XML
for me!

31

PCML so IWS Knows Our Parameters

Our GETCUST example gets input and output as normal parameters. To use
these with IWS, we need to tell IWS what these parameters are. This is done
with yet another XML document.

PCML = Program Call Markup Language

• A flavor of XML that describes a program's (or *SRVPGM's) parameters.

• Can be generated for you by the RPG compiler, and stored in the IFS:

CRTBNDRPG PGM(xyz) SRCFILE(QRPGLESRC)
PGMINFO(*PCML)
INFOSTMF('/path/to/myfile.pcml')

H PGMINFO(*PCML:*MODULE)

• Or can be embedded into the module/program objects themselves, with an
H-spec:

32

GETCUST as SOAP Service

To add a program (such as our
'Get Customer' example) click

"Deploy New Service"

33

SOAP Example (1 of 9)

We'll do SOAP first, so select
SOAP from the choices here.

34

SOAP Example (2 of 9)

Remember the
PGMINFO(*PCML:*MODULE)?

When the PCML is inside the
module, you can just point the web
service server to the ILE program or

service program object.

If the PCML was saved to the IFS,
however, choose the "Browse"

option, and provide the IFS path
name instead.

35

SOAP Example (3 of 9)

The service name must be a valid IBM i
object name. It will be used to store

details about this service on disk.

Description can be whatever you like.

36

SOAP Example (4 of 9)

It knows the parameters from the
PCML. But, I need to tell it which ones

are input, and which are output.

37

SOAP Example (5 of 9)

Here you can specify the userid that
your program will run under.

If you choose "Use Server's UserID" it
will use the one we specified earlier
when we created the server, but you

can choose anything that makes sense
for your application.

It will automatically switch to this
userid when running your program.

38

SOAP Example (6 of 9)

Here you can control the library list
that will be set when your program is

run. You can add and remove any
libraries you like.

39

SOAP Example (7 of 9)

If you check the box here, IWS will set
an environment variable containing the

consumer's IP address.

If you need that – go ahead and check
the box.

Otherwise, just take the default.

40

SOAP Example (8 of 9)

Here you can control some of the finer
details of the WSDL it will generate.

Most SOAP web services use SOAP 1.1,
as SOAP 1.2 never became popular.
(But, 1.2 is a choice here if needed.)

I like to change the "namespace" to my
own namespace. I think that looks

more professional – but the default IBM-
generated one will work just fine.

41

SOAP Example (9 of 9)

This shows a summary of what you've
chosen. Click "Finish" and the IWS will
generate Java programs that will (under

the covers) handle all of the
SOAP/WSDL generation for you, and
call your RPG program as needed.

42

Testing SOAP with SoapUI (1 of 4)

Step 2:

Paste in URL to WSDL
(from the "View Service
Definition" link) into the

Initial WSDL blank.

Step 1:

Click File -> New Project

(some versions say "WSDL
project", others say "SoapUI
project. They're the same.)

43

Testing SOAP with SoapUI (2 of 4)

Step 3:

Expand tree til you find the
'Request 1'. Double click it

to see SOAP request.

Step 4:

Enter the customer number
into the SOAP message for

the input parms.

44

Testing SOAP with SoapUI (3 of 4)

Step 5:

Click the small green triangle
-- SoapUI will send the

request over HTTP to the
IWS server!

45

Testing SOAP with SoapUI (4 of 4)

Step 6:

View the returned SOAP
message (output parms) it

worked!

46

After SOAP, I Need a REST

Remember that REST (sometimes called 'RESTful') web services differ from
SOAP in that:
• the URL points to a "noun" (or "resource")
• the HTTP method specifies a "verb" like GET, POST, PUT or DELETE.

(Similar to a database Create, Read, Update, Delete…)
• REST sounds nicer than CRUD, haha.

IWS structures the URL like this:

http://address:port/ context-root / root-resource / path-template

• context-root = Distinguishes from other servers. The default context-root is
/web/services, but you can change this in the server properties.

• root-resource = identifies the type of resource (or "noun") we're working
with. In our example, we'll use "/cust" to identify a customer. The IWS will
also use this to determine which program to run.

• path-template = identifies the variables/parameters that distinguish this
noun from others. In our example, it'll be the customer number.

47

Example REST Input

For our example, we will use this URL:

http://address:port/web/services/cust/495

Our URL will represent a customer record. Then we can:
• GET <url> the customer to see the address.
• potentially POST <url> the customer to create a new customer record
• potentially PUT <url> the customer to update an existing customer record
• potentially DELETE <url> to remove the customer record.

Though, in this particular example, our requirements are only to retrieve customer
details, so we won't do all four possible verbs, we'll only do GET.

That means in IWS terminology:
• /web/services is the context root.
• /cust is the root resource (and will point to our GETCUST program)
• /495 (or any other customer number) is the path template.

With that in mind, we're off to see the wizard… the wonderful wizard of REST.

48

REST Wizard (1 of 9)

Now I'd like to do the same web service as REST instead of SOAP. (The IWS
also supports REST in the latest versions.)

To do that, I'll click 'Deploy New Service' again, this time choosing REST.

49

REST Wizard (2 of 9)

As with the SOAP example,
PCML will be used to learn

about the program's
parameters.

50

REST Wizard (3 of 9)

resource name is 'cust',
because we want /cust/ in

the URL.

description can be
whatever you want.

PATH template deserves
it's own slide ☺☺☺☺

51

Path Templates

You can make your URL as sophisticated as you like with a REST service. For
example:
• Maybe there are multiple path variables separated by slashes
• Maybe they allow only numeric values
• Maybe they allow only letters, or only uppercase letters, or only lowercase, or

both letters and numbers
• maybe they have to have certain punctuation, like slashes in a date, or

dashes in a phone number.

Path templates are how you configure all of that. They have a syntax like:

{ identifier : regular expression }

• The identifier will be used later to map the variable into a program's
parameter.

• The regular expression is used to tell IWS what is allowed in the parameter

52

Path Template Examples

For our example, we want /495 (or any other customer number) in the URL, so
we do:
/{custno:\d+} identifier=custno, and regular expression \d+ means

\d = any digit, + = one or more

As a more sophisticated example, consider a web service that returns inventory in a
particular warehouse location. The path template might identify a warehouse location in
this syntax
/Milwaukee/202/Freezer1/B/12/C

These identify City, Building, Room, Aisle, Slot and Shelf. The path template might be
/{city:\w+}/{bldg:\d+}/{room:\w+}/{aisle:[A-Z]}/{slot:\d\d}/{shelf:[A-E]}

\w+ = one or more of A-Z, a-z or 0-9 characters.
Aisle is only one letter, but can be A-Z (capital)
slot is always a two-digit number, from 00-99, \d\d means two numeric digits
Shelf is always capital letters A,B,C,D or E.

IWS uses Java regular expression syntax. A tutorial can be found here:
https://docs.oracle.com/javase/tutorial/essential/regex/

53

REST Wizard (4 of 9)

Like SOAP, we have to
identify which parameters

are input or output.

54

REST Wizard (5 of 9)

Here we tell it we want to use GET,
and JSON as the data format.

We also have to tell it where to get
the input parameters. Do they come
from the URL? An uploaded JSON

document? Somewhere else?

In this case, CUSTNO comes from
the URL which IWS calls

"PATH_PARAM". We map the
CUSTNO parameter from the
'custno' identifier in the path

template.

55

REST Wizard (steps 6 to 9)

These steps are the same as the SOAP version

STEP 6 = UserID to run the program under

STEP 7 = Library List to run under

STEP 8 = consumer's IP address or any other HTTP meta data

STEP 9 = Summary screen where you click "Finish" to create the service.

56

Test REST By Doing a REST Test

When you put a URL into the "location" box in your web browser, the browser
does a GET HTTP request. Therefore, a web browser is an easy way to test
REST web services that use the GET method.

That way, you can make sure your service works before opening it up to other
people who may be using a web service consumer.

57

SOAPUI REST Testing (1 of 2)

Since it's hard to test other methods (besides GET) in a browser, it's good to
have other alternatives. Recent versions of SoapUI have nice tools for testing
REST services as well.

Choose File / New REST Project, and type the URL, then click OK

58

SOAPUI REST Testing (2 of 2)
Here you can change the method
and the resource ("noun") easily,

and click the green "play" button to
try it.

It can also help make XML, JSON or
HTML output "prettier" by

formatting it for you.

59

Do It Yourself

IWS is a neat tool, but:

• Maximum of 7 params
• Can't nest arrays inside arrays
• Supports only XML or JSON
• Very limited options for security
• doesn't always perform well

Writing your own:
• Gives you complete control
• Performs as fast as your RPG code can go.
• Requires more knowledge/work of web service technologies such as XML and JSON
• You can accept/return data in any format you like. (CSV? PDF? Excel? No problem.)
• Write your own security. UserId/Password? Crypto? do whatever you want.
• The only limitation is your imagination.

60

Create an HTTP Server

Click “Setup” to create a
new web server.

Do not create a web
services server at this
time. That is for IBM’s

Integrated Web Services
tool.

Instead, create a “normal”
HTTP server.

61

The “Server Name”

The “Server Name”
controls:

•The job name of the
server jobs

•The IFS directory where
config is stoed

•The server name you
select when editing
configs

•The server name you
select when
starting/stopping the
server.

62

Server Root

The “server root” is the
spot in the IFS where all
the files for this server
should go.

By convention, it’s always
/www/ + server name.

63

Document Root

The “document root” is the default
location of files, programs, images, etc.
Anything in here is accessible over a
network from your HTTP server.

By convention, it’s always specified as
/www/ + server name + /htdocs

64

Set Port Number

This is where you specify the port
number that we determined on the
“Manage / All Servers” screen.

65

Access Log

An “access log” will log all accesses
made to the HTTP server. Useful to track
server activity.

66

Access Log Retension

Over time, access logs can get quite
large. The HTTP server can automatically
delete data over a certain age.

I like to keep mine for about a week.

67

Summary Screen

This screen summarizes the settings
you provided. When you click
“Finish”, it will create the server
instance.

68

URL Tells Apache What To Call

ScriptAliasMatch /rest/ ([a-z0-9]+) /.* /qsys.lib/ skwebsrv .lib/ $1.pgm

<Directory /qsys.lib/skwebsrv.lib>
Require all granted

</Directory>

To get started with REST, let's tell Apache how to call our program.

http://your-ibmi:8500/rest/ custinfo /495 (CALL SKWEBSRV/CUSTINFO)

You'll want to make a library just for web services, anything in this library will be callable
from a web service consumer. I called mine SKWEBSRV

• add the preceding code to the bottom of an Apache instance on IBM i.
• ScriptAliasMatch tells Apache that you want to run a program.
• /rest/ is our "context root" Apache will CALL PGM(SKWEBSRV/XXX)

• [a-z0-9]+ is a regular expression allowing all letters/numbers
• Parenthesis store the value in variable $1, used as "root resource"
• The /.* allows any trailing characters, we'll use that as our "path template" , and

work it out in our RPG program.
• Our REST web service can be run from any IP address (Require all granted).

69

Apache 2.4 Update

<Directory /qsys.lib/skwebsrv.lib>
Require all granted

</Directory>

Starting with IBM i 7.2, we have Apache 2.4. They recommend using "require"
instead of "Order"

Newer IBM i 7.2 syntax:

<Directory /qsys.lib/skwebsrv.lib>
Order allow,deny
Allow from all

</Directory>

For older releases, replace the above with:

70

Edit Configuration File

Scroll down to the “Tools” section.

Use “edit configuration file” to enter
Apache directives.

Tip: You can use “Display
configuration file” to check for errors
in the Apache configuration.

71

Add Custom Directives

Scroll down to the bottom of the file.

Type the directives (as shown) and
click “Apply” to save your changes.

72

Start New Apache Server

Before starting, click “Display
Configuration File” and make sure it
does not show any errors.

Then, click the green “start” button
at the top to start your new server.

You can also start from 5250 with:

STRTCPSVR *HTTP HTTPSVR(MYDEMO)

73

DIY REST Example

GET http://your-ibmi:8500/rest/custinfo/ 495

Our web service takes a customer number as input, and returns that
customer's address.

<result>
<cust id=" 495">

<name>ANCO FOODS</name>
<street> 1100 N.W. 33RD STREET </street>
<city> POMPANO BEACH</city>
<state> FL</state>
<postal> 33064-2121 </postal>

</cust>
</result>

In
pu

t
O

ut
pu

t

74

This is CGI -- But It's Not HTML

Web servers (HTTP servers) have a standard way of calling a program on the
local system. It's know as Common Gateway Interface (CGI)

• The URL you were called from is available via the REQUEST_URI envvar

• The verb GET is available from the REQUEST_METHOD envvar

• If any data is uploaded to your program you can retrieve it from "standard
input".

• To write data back from your program to Apache (and ultimately the web
service consumer) you write your data to "standard output"

To accomplish this, I'm going to use 3 different APIs (all provided by IBM)
• getenv � retrieves an environment variable.
• QtmhRdStin � reads standard input
• QtmhWrStout � writes data to standard output.

75

DIY REST Example (1 of 3)

FCUSTFILE IF E K DISK

D getenv PR * extproc('gete nv')
D var * value options (*string)

D QtmhWrStout PR extproc('Qtmh WrStout')
D DtaVar 65535a options(*vars ize)
D DtaVarLen 10I 0 const
D ErrorCode 8000A options(*vars ize)

D err ds qualified
D bytesProv 10i 0 inz(0)
D bytesAvail 10i 0 inz(0)

D xml pr 5000a varying
D inp 5000a varying const

D CRLF C x'0d25'
D pos s 10i 0
D uri s 5000a varying
D data s 5000a

76

DIY REST Example (2 of 3)

D ID1 c '/custinfo/‘

uri = %str(getenv('REQUEST_URI'));

monitor;
pos = %scan(ID1: uri) + %len(ID1);
custno = %int(%subst(uri:pos));

on-error;
data = 'Status: 500 Invalid URI' + CRLF

+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<error>Invalid URI</error>' + CRLF;

QtmhWrStout(data: %len(%trimr(data)): err);
return;

endmon;

chain custno CUSTFILE;
if not %found;

data = 'Status: 500 Unknown Customer' + CRLF
+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<error>Unknown Customer Number</error>' + CRLF;

QtmhWrStout(data: %len(%trimr(data)): err);
return;

endif;

REQUEST_URI will
contain

http://x.com/cust/495

Custno is everything
after /cust/ in the URL

If an error occurs, I set
the status to 500, so the
consumer knows there
was an error. We also
provide a message in

XML, in case the
consumer wants to

show the user.

77

DIY REST Example (3 of 3)

data = 'Status: 200 OK' + CRLF
+ 'Content-type: text/xml' + CRLF
+ CRLF
+ '<result>'
+ '<cust id="' + %char(custno) + '">'
+ '<name>' + xml(name) + '</name>'
+ '<street>' + xml(street) + '</street>'
+ '<city>' + xml(city) + '</city>'
+ '<state>' + xml(state) + '</state>'
+ '<postal>' + xml(postal) + '</postal>'
+ '</cust>'
+ '</result>' + CRLF;

QtmhWrStout(data: %len(%trimr(data)): err);

Status 200 means that
all was well.

Here I send the XML
Response.

The xml() subprocedure is just a little tool to esc ape any special
characters that might be in the database fields.

I won't include the code for that in this talk, but you can download
the complete program from my web site (see link at end of handout.)

78

Testing and More Examples

• There's nothing special about testing our DIY example. You call it the same

as any other REST web service – just use SoapUI or the browser, just as we

did with the IWS example.

• There are additional examples of REST and SOAP in the handout. These

are for your benefit – due to time concerns, Scott will skip over these in a

standard 75 minute presentation.

79

REST With Multiple Parameters

http://i.scottklement.com:8001/rest/invoice/ 495 / 20100901 / 20100930

• Although the previous slide had only one parameter, REST can have
multiple parameters -- but they must all fit on the same URL.

• This web service is designed to return a list of invoices for a given customer
number, within a given date range.

• 495 = customer number
• 20100901 = start date (in year, month, date format)
• 20100930 = end date (in year, month, date format)

The web service will scan for the slashes, get the parameter info from the
URL, and build a JSON document that matches the criteria.

80

Our JSON Web Service Example

{ "success": true,
"errmsg": "",
"list": [{

"invno": "xyz",
"date": "2012-01-23",
"name": "Acme Industries, Inc.",

"amount": 123.45,
"weight": 123.45,

},
{ same fields again },
{ same fields again },
{ etc }

]}

http://i.scottklement.com:8001/rest/invoice/ 495 / 20100901 / 20100930

{
"success": false,
"errmsg": "Put Error Message Here"

}

For our next example, we’ll create a report of all invoices for a customer.

If an error occurs, we’ll
output a JSON

document like this.

If there’s no error, we’ll
output data in JSON

format, as a big array of
data structures.

There’s no limit to how
many rows of data you

can place in a JSON
document.

81

DIY JSON, RPG Code (1 of 5)

D CRLF C x'0d25'
D data s 5000a varying
D uri s 5000a varying
D cust s 4s 0
D sdate s 8s 0
D edate s 8s 0
d custpos s 10i 0
d sdatepos s 10i 0
d edatepos s 10i 0
D jsonName s 25a
D jsonDate s 10a

* Unicode versions of {, }, [and], respectively.
D LBRACE C u'007b'
D RBRACE C u'007d'
D RSQB C u'005d'
D LSQB C u'005b‘

D row ds qualified
D inv 5a
D date 8s 0
D name 25a
D amount 9p 2
D weight 9p 1

82

DIY JSON, RPG Code (2 of 5)

/free
exec SQL set option naming=*SYS;

*inlr = *on;
uri = %str(getenv('REQUEST_URI'));

monitor;
custpos = %scan('/invoice/': uri) + %len('/invoice/ ');
sdatepos = %scan('/': uri: custpos) + 1;
edatepos = %scan('/': uri: sdatepos) + 1;
cust = %int(%subst(uri: custpos: (sdatepos-custpos -1)));
sdate = %int(%subst(uri: sdatepos: (edatepos-sdatep os-1)));
edate = %int(%subst(uri: edatepos));

on-error;
data = 'Status: 500 Invalid URI' + CRLF

+ 'Content-type: text/json' + CRLF
+ CRLF
+ %char(LBRACE) + CRLF
+ '"success": false,' + CRLF
+ '"errmsg": "An unknown URI format was given"' + C RLF
+ %char(RBRACE) + CRLF;

QtmhWrStout(data: %len(data): err);
return;

endmon;

83

DIY JSON, RPG Code (3 of 5)

exec SQL declare C1 cursor for
select aiOrdn, aiIDat, aiSNme, aiDamt, aiLbs

from ARSHIST
where aiCust = :cust

and aiIDat between :sdate
and :edate;

exec SQL open C1;
exec SQL fetch next from C1 into :row;

if sqlstt<>'00000'
and %subst(sqlstt:1:2) <> '01'
and %subst(sqlstt:1:2) <> '02';
data = 'Status: 500 Query Failed' + CRLF

+ 'Content-type: text/json' + CRLF
+ CRLF
+ %char(LBRACE) + CRLF
+ '"success": false,' + CRLF
+ '"errmsg": "SQL Failed with SQLSTT='+SQLSTT+'"' + CRLF
+ %char(RBRACE) + CRLF;

QtmhWrStout(data: %len(data): err);
return;

endif;

84

DIY JSON, RPG Code (4 of 5)

data = 'Status: 200 OK' + CRLF
+ 'Content-type: text/json' + CRLF
+ CRLF
+ %char(LBRACE) + CRLF
+ '"success": true,' + CRLF
+ '"errmsg": "",' + CRLF
+ '"list": ' + %char(LSQB);

QtmhWrStout(data: %len(data): err);

• Each time I call QtmhWrStout(), it adds more data on to the end of what I’ve
already sent.

• This part is just the start of the JSON document.
• Subsequent calls will write rows of data, and they will be added on to the

end.
• Finally, we’ll call QtmhWrStout one last time to end the JSON document.

85

DIY JSON, RPG Code (5 of 5)

dow %subst(sqlstt:1:2)='00' or %subst(sqlstt:1:2)=' 01';
jsonName = %scanrpl('"': '\"': row.name);
jsonDate = %char(%date(row.date: *iso): *iso);
data = %char(LBRACE) + CRLF

+ ' "invno": "' + row.inv + '",' + CRLF
+ ' "date": "' + jsonDate + '",' + CRLF
+ ' "name": "' + %trim(jsonName) + '",' + CRLF
+ ' "amount": "' + %char(row.amount) + '",' + CRLF
+ ' "weight": "' + %char(row.weight) + '"' + CRLF
+ %char(RBRACE);

QtmhWrStout(data: %len(data): err);

exec SQL fetch next from C1 into :row;
if %subst(sqlstt:1:2)='00' or %subst(sqlstt:1:2)='0 1';

data = ',' + CRLF;
else;

data = CRLF;
endif;
QtmhWrStout(data: %len(data): err);

enddo;

data = %char(RSQB) + %char(RBRACE) + CRLF;
QtmhWrStout(data: %len(data): err);

86

JSON Output in Browser

You can test this
one with SoapUI's
testing tool, too.

87

A SOAP Service With a List

The GETCUST service only returns one "record" so to speak.
Can I do something like the "Invoice List" (the DIY example) using SOAP?

• Q: How do I do that if Idon't code the XML in the program?
• A: With an array!

• Q: How do make an array that returns a list of "records" (more than one field
per array element)?

• A: Use an array of data structures.

• Q: What if the number of returned elements (i.e. the number of invoices in the
list) varies? How can I specify the number of returned array elements?

• A: If you code a "10i 0" parameter in your parameter list, IWS will let you use it
to control the array size.

88

SOAPINV (invoice list) (1 of 2)

H OPTION(*SRCSTMT: *NODEBUGIO) PGMINFO(*PCML:*MODULE)

D row ds qualified inz
D inv 5a
D date 8s 0
D name 25a
D amount 9p 2
D weight 9p 1

D SOAPINV PR ExtPgm('SOAPI NV')
D CustNo 4p 0 const
D strDate 8p 0 const
D endDate 8p 0 const
D rtnCount 10i 0
D rtnList likeds(row) d im(999)
D SOAPINV PI
D CustNo 4p 0 const
D strDate 8p 0 const
D endDate 8p 0 const
D rtnCount 10i 0
D rtnList likeds(row) d im(999)

rtnCount will tell
IWS how many

invoices are
returned. (to a
999 maximum)

rtnList is the
returned array.

Notice: LIKEDS!

This is what needs to
be returned for each

invoice in the list

89

SOAPINV (invoice list) (2 of 2)

rtnCount = 0;

exec SQL declare C1 cursor for
select aiOrdn, aiIDat, aiSNme, aiDamt, aiLbs

from ARSHIST
where aiCust = :CustNo

and aiIDat between :strDate
and :endDate ;

exec SQL open C1;
exec SQL fetch next from C1 into :row;

dow sqlstt='00000' or %subst(sqlstt:1:2)='01';
rtnCount = rtnCount + 1;
rtnList(rtnCount) = row;
exec SQL fetch next from C1 into :row;

enddo;

exec SQL close C1;

For each record
found, rtnCount
is updated, and
rtnList() array

contains a row.

CustNo, strDate and
endDate are all input

parameters passed by
IWS.

90

SOAPINV In the Wizard (1 of 2)

Deploy new service adds
another web service to the

existing server.

The other screens will be the same as
they were for GETCUST.

Except, that on the parameter screen,
I have to tell IWS about the returned
parameter count.

91

By default, the count for RTNLIST is 999, just like the DIM(999) in my RPG code.

But I can change it to "RTNCOUNT" because RTNCOUNT happens to be a 10i 0 field, IWS knows it
can be used to specify the array size.

Unfotunately, there's no way to stop IWS from sendi ng RTNCOUNT to the consumer, as well. (But
if the consumer doesn't need it, it can ignore it.)

SOAPINV In the Wizard (2 of 2)

92

Discussion / Wrap Up

SOAP is heavily standardized, works best with tools
REST is simpler, more versatile, runs faster

• Use SOAP when making a service to be called my "the
masses" (customers, vendors, anything where there are
a lot of consumers) because they can use tools, so you
don't have to help them.

• Use REST for everything else.

• Use DIY when you need to go beyond what IWS can do,
or when performance is paramount

93

More Information / Resources

Gaining a basic understanding of HTTP:

What Is HTTP, Really? (Scott Klement)
http://iprodeveloper.com/application-development/what-http-really

What's the Difference Between a URI, URL, and Domain Name? (Scott Klement)
http://iprodeveloper.com/application-development/whats-difference-between-uri-url-and-

domain-name

Gaining a basic understanding of Web Services & Terminology:

Web Services: The Next Big Thing (Scott N. Gerard)
http://iprodeveloper.com/rpg-programming/web-services-next-big-thing

SOAP, WDSL, HTTP, XSD? What? (Aaron Bartell)
http://iprodeveloper.com/rpg-programming/soap-wdsl-http-xsd-what

94

More Information / Resources

w3schools.com -- free (and great!) site for learning web technolog y
XML: http://www.w3schools.com/xml/default.asp
Web Services: http://www.w3schools.com/webservices/default.asp
WSDL: http://www.w3schools.com/wsdl/default.asp
SOAP: http://www.w3schools.com/soap/default.asp

IBM's web site for the Integrated Web Services (IWS) tool:
http://www.ibm.com/systems/i/software/iws/
http://www.ibm.com/systems/i/software/iws/quickstar t_server.html

SoapUI home page
http://www.soapui.org

WSDL2RPG Home Page
http://www.tools400.de/English/Freeware/WSDL2RPG/ws dl2rpg.html

Call a Web Service with WDSL2RPG (Thomas Raddatz)
http://iprodeveloper.com/rpg-programming/call-web-s ervice-wdsl2rpg

95

More Information / Resources

How-To Articles About Consuming/Providing Web Servi ces:

RPG Consumes the REST (Scott Klement)
http://iprodeveloper.com/rpg-programming/rpg-consum es-rest

RPG Consuming Web Services with HTTPAPI and SoapUI (Scott Klement)
http://iprodeveloper.com/rpg-programming/rpg-consum ing-web-services-httpapi-and-soapui

IBM's Integrated Web Services (Scott Klement)
http://iprodeveloper.com/application-development/ib ms-integrated-web-services

Consume Web Services with IBM's IWS (Scott Klement)
http://iprodeveloper.com/rpg-programming/consume-we b-services-ibms-iws

Serving RESTful Web Services in RPG
http://iprodeveloper.com/rpg-programming/serving-re stful-web-services-rpg

Serve JSON Web Services with RPG and YAJL
http://iprodeveloper.com/rpg-programming/serve-json -web-services-rpg-and-yajl

96

More Information / Resources
Sites that offer web service directories
• WebServiceX.net
• XMethods.net
• BindingPoint.com
• RemoteMethods.com

RPG's XML Opcodes & BIFs:

"Real World" Example of XML-INTO (Scott Klement)
http://iprodeveloper.com/rpg-programming/real-world -example-xml

RPG's XML-SAX Opcode
http://iprodeveloper.com/rpg-programming/rpgs-xml-s ax-opcode

PTFs for Version 6.1 Enhance RPG's XML-INTO
http://iprodeveloper.com/rpg-programming/ptfs-versi on-61-enhance-rpgs-xml

XML-INTO: Maximum Length
http://iprodeveloper.com/rpg-programming/xml-maximu m-length

XML-INTO: Read XML Data Larger Than 65535
http://iprodeveloper.com/rpg-programming/xml-read-x ml-data-larger-65535

XML-INTO: Output to Array Larger than 16 MB
http://iprodeveloper.com/rpg-programming/xml-output -array-larger-16-mb

97

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

The Sample Web Service Providers in this article ar e also
available at the preceding link.

Thank you!

