SQL Beyond the Basics

Jerome Hughes
Freelance Developer
Omni Power i Day of Education 2010

Beyond the Basics

® What basics!?
® Just the most basic of queries

® The sort of statement usually issued “ad-
hoc” and left behind

e SELECT * FROM library/file WHERE
field = ‘value’

e SELECT * FROM collection/table
WHERE column = ‘value’

What’s Good about
these basics!?

® Fill a need when created

® Way easier than writing an equivalent
program

What'’s not so good
about these basics!?

® Scroll away upward, using STRSQL
® Always starting over, more trouble to find it

® So, how can we move beyond this!?

SQL strategies

® To become fluent in a new language, it’s best
to build on what’s been learned beforehand

To build on what’s been learned beforehand,
it's easiest if your previous attempts are easily
available for review

So... save your queries, giving them names and
descriptions, adding comments and managing
them just like you do your RPG programs

Manage your queries!

® The first and often only tool most IBM i
programmers used for SQL was STRSQL,
which is cumbersome for this, so it’s less than
“natural” for most

There are many ways to accomplish this, but
it’s important to choose one or more and...

Capture your work!

® Stop letting your simpler queries scroll up
into oblivion!

® Keep ‘em around to start with when building
more complex queries

That simple query...

® Type it faster than find it!

® Butis it, really? Is it adjusted and rerun, and
what about next time?

® SELECT orddat, order,amount FROM orders
WHERE orddat BETWEEN 20100101 and
20100227

® What's here that might be reusable?

... is the seed of
something less simple!

® Save it by subject, with a name like
OrderDateRange

® Then it can be found and adapted to a new
name and purpose

SELECT orddat, count(*), sum(amount)
FROM orders WHERE orddat BETWEEN
20070101 and 20070227 GROUP BY orddat
ORDER BY orddat

Recipes you can mix
together!

® In source containers named for subject and/
or purpose, drop any misfires, copy forward
successes, commenting!

Keep what works around for quick reuse and
adaptation

SQL queries (on their own) are a non-
procedural language where you specify what
you want and let the database figure out how
to retrieve it

Starting today!

® Becoming adept with applying more
complicated SQL queries is good preparation
for learning to write programs that make use
of SQL queries

® When writing SQL programs, they’ll be
stored in source files, so why wait, accelerate!

Simple SELECT
statement

SELECT * FROM jhughes/orders
® save it as “orders”

® then comment, copy and adapt

-- SELECT * FROM jhughes/orders

SELECT orddat, order, amount

FROM jhughes/orders

WHERE orddat BETWEEN 20070101 AND 20070227
ORDER BY orddat, order

Format for you!

® follow consistent case rules for readability
break lines when new SQL keywords
encountered

® comment lines to “turn them off/on” (cut/
paste, editor cmds)

® copy and adjust lines to adapt statements

SELECT with JOIN

SELECT a.orddat, a.order, a.custid, b.item, b.quantity, b.price, b.quantity *
b.price lineExt FROM jhughes/orders a

JOIN jhughes/orderLines b
ON a.order = b.order
WHERE orddat BETWEEN 20070101 AND 20070227
ORDER BY orddat, order
® correlations “a” and “b” qualify fields to files
® calculation name can be overridden after declaration

® give it a name like “orderLines”

EXCEPTION JOIN

SELECT a.order, a.line, a.quantity, a.item, a.price
FROM jhughes/orderLines a

EXCEPTION join jhughes/order b

ON a.order = b.order

® returns order lines without a matching
order header

plain JOIN ?

SELECT a.orddat, a.order, a.custid, b.item, b.quantity, b.price, b.quantity *
b.price lineExt

FROM jhughes/orders a
JOIN jhughes/orderLines b
ON a.order = b.order

® regular JOIN does not return order without lines

LEFT OUTER JOIN

SELECT a.orddat, a.order; a.custid,

b.item, b.quantity, b.price, b.quantity * b.price lineExt
FROM jhughes/orders a

LEFT OUTER JOIN jhughes/orderLines b

ON a.order = b.order

® returns order without lines, with null values in line fields

GROUP BY for

summaries

SELECT item, sum(quantity)
FROM jhughes/orderLines
GROUP BY item
ORDER BY item
® summarizes by GROUP BY column(s)

® 5o all other columns must be aggregated
or errors will occur

GROUP BY strategies

start with grouped columns, add
aggregated columns

start with grouping and ordering alike

min() or max() can get only value when all
in a group match, like an order line item
description might here

other aggregators include avg(), count(*)

GROUP BY for ranking

SELECT item, sum(quantity) qtySold
FROM jhughes/orderLines
GROUP BY item
ORDER BY qtySold DESC
® show biggest sellers first with DESC

HAVING groups like...

SELECT item, sum(quantity) qtySold
FROM jhughes/orderLines

GROUP BY item

HAVING qtySold > 500

ORDER BY qtySold DESC

® establish a floor on the summary with
HAVING

® Jike a post-GROUPing WHERE clause

WHERE clause
variations

BETWEEN column/value AND column/value

IN(value, value, value...)

IN(SELECT column FROM table WHERE...)

LIKE ‘string%’ (% = any number of chars)
LIKE ‘string_’ (_ = any one character)

IS NULL (not “= NULL”)

NOT flips any of these

Counting...

SELECT state, count(*)
FROM jhughes/orders

WHERE orddate between 20070101 AND 20070227
GROUP BY state
ORDER BY count(*) DESC

® shows distribution of records by code

...and Sampling

SELECT *
FROM jhughes/orders a
WHERE MOD(RRN(a), 100)=0

® shows every |00th row (assuming even
distribution)

UNION combines
multiple SELECTs

SELECT class, item FROM jhughes/itemClassA
WHERE class LIKE ‘A%’
UNION

SELECT class, item FROM jhughes/itemClassB
WHERE class LIKE ‘B%’
ORDER BY class, item

® returns records from both SELECTS in one
result

UNION details

each SELECT gets its own WHERE clause
one ORDER BY clause for entire construct
field list types must match across SELECTs
first SELECT determines naming

fields can be sourced from anywhere

CASE gets procedural in
SELECT

SELECT key, name,
CASE code

WHEN ‘A’ THEN ‘After’
WHEN ‘B’ THEN ‘Before’
END

FROM table...
® allows expansions of codes, etc.

® can also be done with conditionals, like...

CASE with conditions

SELECT key, name,

CASEWHEN colval < |10 THEN ‘singledigit’
WHEN colval < 100 THEN ‘doubledigits’
ELSE ‘hundredsormore’ END

FROM table...

® allows labeling of ranges, etc.

Subqueries for selection

SELECT order, amount
FROM orders
WHERE amount >
(SELECT AVG(amount) FROM orders)

® returns above average orders

More Subquery Selection

SELECT customer, order, amount
FROM orders
WHERE customer IN

(SELECT customers FROM topcusts)

® selects only orders from customers listed
in topcusts

Finding unattached lines

SELECT a*
FROM orderLines a
WHERE NOT a.order IN
(SELECT b.order FROM orders b)

® shows only those lines not attached to
orders

... and lineless orders

SELECT a.*
FROM orders a
WHERE NOT a.order IN

(SELECT DISTINCT b.order FROM orderLines
b)

® shows only those orders without lines

Queries that change
things

® VWhen moving beyond SELECT to UPDATE
and DELETE

® Test WHERE clauses first using SELECTs
® Prove your test results are satisfactory first!

® Run to a file, then query to prove it
matches

Be sure beforehand!

® When ready, run first on test copy of data
® After testing, back up what will change first!

® Create and document your plan with
comments/notes

® Verify your plan, and protect your assets!

Updating related records

® Use caution, do it on test copies first, etc.
® Here’s the template for doing one...

® keys must specify unique records

® may be compound keys concatenated

® use CHAR(column) to concatenate
numeric keys

Related record template

e UPDATE tablea a SET a.updatecolumn =
(SELECT b.value FROM tableb b
WHERE b.key = a.key)

® WHERE a.key =

® (SELECT b.key FROM tableb b
WHERE b.key = a.key)

Trying it out on a
customer table

cusmas and cusnew were the same
both are keyed by cusnbr

changes made to cusnew’s cuscls are needed
in cusmas

start by SELECTing the target set

Trying it out on
customer table |l

SELECT a.cusnbr, a.cusnam, a.cuscls, b.cuscls
FROM cusmas a

JOIN cusnew b

ON a.cusnbr = b.cusnbr

WHERE a.cuscls <> b.cuscls

® shows record key, description, old and new classes

® proves correct records will be adjusted as desired

Before you go do it

Be sure you have the right records verified
Make a copy of the data

Run it against that copy

Check that it worked

Make a backup of what you're going to
change

Be careful and document, then read what was
written!

Scalar Subselect

UPDATE cusmas a SET a.cuscls =
(SELECT b.cuscls FROM cusnew b

WHERE b.cusnbr = a.cusnbr)
WHERE a.cusnbr =

(SELECT b.cusnbr FROM cusnew b
WHERE b.cusnbr = a.cusnbr)
® prove this works on a subset and it will

save a lot of time on processing a large
table which needs updating by key!

Embedding SQL in RPG
programs

All SQL statements must be delimited by
/EXEC SQL and /END-EXEC statements
Source is compiled with CRTSQLRPG command

SQL statements are first evaluated by SQL
precompiler

At execution time, errors are returned in

SQLCOD

® don’t define this, it will just be there

Opening access path

® First declare a cursor to manage the path
C/EXEC SQL
C DECLARE CURSOR c| FOR SELECT * FROM tablel
C/END-EXEC

® execution of this code establishes the
access path

Retrieving a row

“Read” a record from the path with a FETCH statement
C/EXEC SQL

C FETCH cl INTO :dsname

C/END-EXEC

:dsname is a data structure field for SELECT clause
record image

® use an external DS to pull in columns

® access data structure subfields to use data

Check state

o SQLSTT & SQLCOD are automatically included
e don’t need to be defined
® 0 = ok, other codes denote EOF, errors
SQLSTT IFEQ O
EXSR PROCESS
ENDIF

...and close

® close the path with a CLOSE cursor-name
C/EXEC SQL
C CLOSE cl
C/END EXEC

SQL Trigger example I.|

CREATE TRIGGER new_hire
AFTER INSERT ON employee
FOR EACH ROW MODE DB2SQL
UPDATE company_stats SET nbemp = nbemp + |

SQL Trigger example

CREATE TRIGGER former_employee
AFTER DELETE ON employee

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC
UPDATE company_stats SET nbemp = nbemp - [;
END

® |.I & 1.2 together keep a count of employees updated

SQL Trigger example 2.1

CREATE TRIGGER reorder

AFTER UPDATE OF onhand, max_stocked ON parts
REFERENCING NEW_TABLE AS ntable

FOR EACH STATEMENT MODE DB2SQL

BEGIN ATOMIC
(SELECT ...)

END

SQL Trigger example 2.2

(..BEGIN ATOMIC...)
SELECT issue_ship_request(max_stocked - on_hand,
partno)
FROM ntable
WHERE on_hand < 0.10 * max_stocked;
END

® only runs once per statement, finds rows where stock is low and
runs UDF issue_ship_request for each one

SQL Trigger example 3.1

CREATE TRIGGER sal_adj
AFTER UPDATE OF salary ON employee
REFERENCING OLD AS old_emp
NEW AS new_emp
FOR EACH ROW MODE DB2SQL

WHEN (new_emp.salary > old_emp.salary * 1.2))
BEGIN ATOMIC
(do something)

END

SQL Trigger example

(BEGIN ATOMIC...)

SIGNAL SQLSTATE ‘75001’ (‘Invalid Salary Increase

exceeds 20%’);
END

® throws SQL exception to requestor

SQL Stored Procedure
example

CREATE PROCEDURE update_salary_|
(IN employee_number CHAR(10),
IN rate DECIMAL(6,2))
LANGUAGE SQL MODIFIES SQL DATA

UPDATE corpdata.employee

SET salary = salary * rate

WHERE empno = employee number

® declares parameters and runs statement with columns & parms

SQL Stored Procedure
components

® expand beyond single statement with SQL
control statements

e CALL, CASE, FOR, IF ITERATE, LEAVE,
LOOP, REPEAT, RETURN, WHILE

® run from client or with SQL CALL from
another procedure

® see Robert Andrews in Session 5!

Get help with it...

check out http://www.midrange.com

email me directly at...

® jromeh@aol.com or jromeh@comcast.net
will be glad to help when there’s time

it’s always good to have a sounding board

® thanks to the many folks who have served
in this role for me!

