
Jerome Hughes
Freelance Developer

Omni Power i Day of Education 2010

SQL Beyond the Basics

• What basics?

• Just the most basic of queries

• The sort of statement usually issued “ad-
hoc” and left behind

• SELECT * FROM library/file WHERE
field = ‘value’

• SELECT * FROM collection/table
WHERE column = ‘value’

Beyond the Basics

What’s Good about
these basics?

• Fill a need when created

• Way easier than writing an equivalent
program

What’s not so good
about these basics?

• Scroll away upward, using STRSQL

• Always starting over, more trouble to find it

• So, how can we move beyond this?

• To become fluent in a new language, it’s best
to build on what’s been learned beforehand

• To build on what’s been learned beforehand,
it’s easiest if your previous attempts are easily
available for review

• So... save your queries, giving them names and
descriptions, adding comments and managing
them just like you do your RPG programs

SQL strategies

Manage your queries!

• The first and often only tool most IBM i
programmers used for SQL was STRSQL,
which is cumbersome for this, so it’s less than
“natural” for most

• There are many ways to accomplish this, but
it’s important to choose one or more and...

Capture your work!

• Stop letting your simpler queries scroll up
into oblivion!

• Keep ‘em around to start with when building
more complex queries

• Type it faster than find it!

• But is it, really? Is it adjusted and rerun, and
what about next time?

• SELECT orddat, order, amount FROM orders
WHERE orddat BETWEEN 20100101 and
20100227

• What’s here that might be reusable?

That simple query...

... is the seed of
something less simple!
• Save it by subject, with a name like

OrderDateRange

• Then it can be found and adapted to a new
name and purpose

• SELECT orddat, count(*), sum(amount)
FROM orders WHERE orddat BETWEEN
20070101 and 20070227 GROUP BY orddat
ORDER BY orddat

• In source containers named for subject and/
or purpose, drop any misfires, copy forward
successes, commenting!

• Keep what works around for quick reuse and
adaptation

• SQL queries (on their own) are a non-
procedural language where you specify what
you want and let the database figure out how
to retrieve it

Recipes you can mix
together!

Starting today!

• Becoming adept with applying more
complicated SQL queries is good preparation
for learning to write programs that make use
of SQL queries

• When writing SQL programs, they’ll be
stored in source files, so why wait, accelerate!

SELECT * FROM jhughes/orders

• save it as “orders”

• then comment, copy and adapt

-- SELECT * FROM jhughes/orders

SELECT orddat, order, amount

FROM jhughes/orders

WHERE orddat BETWEEN 20070101 AND 20070227

ORDER BY orddat, order

Simple SELECT
statement

Format for you!

• follow consistent case rules for readability
break lines when new SQL keywords
encountered

• comment lines to “turn them off/on” (cut/
paste, editor cmds)

• copy and adjust lines to adapt statements

SELECT a.orddat, a.order, a.custid, b.item, b.quantity, b.price, b.quantity *
b.price lineExt FROM jhughes/orders a

JOIN jhughes/orderLines b

ON a.order = b.order

WHERE orddat BETWEEN 20070101 AND 20070227

ORDER BY orddat, order

• correlations “a” and “b” qualify fields to files

• calculation name can be overridden after declaration

• give it a name like “orderLines”

SELECT with JOIN

SELECT a.order, a.line, a.quantity, a.item, a.price

FROM jhughes/orderLines a

EXCEPTION join jhughes/order b

ON a.order = b.order

• returns order lines without a matching
order header

EXCEPTION JOIN

SELECT a.orddat, a.order, a.custid, b.item, b.quantity, b.price, b.quantity *
b.price lineExt

FROM jhughes/orders a

JOIN jhughes/orderLines b

ON a.order = b.order

• regular JOIN does not return order without lines

plain JOIN ?

LEFT OUTER JOIN

SELECT a.orddat, a.order, a.custid,

b.item, b.quantity, b.price, b.quantity * b.price lineExt

FROM jhughes/orders a

LEFT OUTER JOIN jhughes/orderLines b

ON a.order = b.order

• returns order without lines, with null values in line fields

SELECT item, sum(quantity)

FROM jhughes/orderLines

GROUP BY item

ORDER BY item

• summarizes by GROUP BY column(s)

• so all other columns must be aggregated
or errors will occur

GROUP BY for
summaries

GROUP BY strategies

• start with grouped columns, add
aggregated columns

• start with grouping and ordering alike

• min() or max() can get only value when all
in a group match, like an order line item
description might here

• other aggregators include avg(), count(*)

SELECT item, sum(quantity) qtySold

FROM jhughes/orderLines

GROUP BY item

ORDER BY qtySold DESC

• show biggest sellers first with DESC

GROUP BY for ranking

HAVING groups like...
SELECT item, sum(quantity) qtySold

FROM jhughes/orderLines

GROUP BY item

HAVING qtySold > 500

ORDER BY qtySold DESC

• establish a floor on the summary with
HAVING

• like a post-GROUPing WHERE clause

• BETWEEN column/value AND column/value

• IN(value, value, value...)

• IN(SELECT column FROM table WHERE...)

• LIKE ‘string%’ (% = any number of chars)

• LIKE ‘string_’ (_ = any one character)

• IS NULL (not “= NULL”)

• NOT flips any of these

WHERE clause
variations

SELECT state, count(*)
FROM jhughes/orders

WHERE orddate between 20070101 AND 20070227

GROUP BY state

ORDER BY count(*) DESC

• shows distribution of records by code

Counting...

... and Sampling

SELECT *

FROM jhughes/orders a

WHERE MOD(RRN(a),100)=0

• shows every 100th row (assuming even
distribution)

SELECT class, item FROM jhughes/itemClassA

WHERE class LIKE ‘A%’

UNION

SELECT class, item FROM jhughes/itemClassB

WHERE class LIKE ‘B%’

ORDER BY class, item

• returns records from both SELECTS in one
result

UNION combines
multiple SELECTs

UNION details

• each SELECT gets its own WHERE clause

• one ORDER BY clause for entire construct

• field list types must match across SELECTs

• first SELECT determines naming

• fields can be sourced from anywhere

SELECT key, name,

CASE code

WHEN ‘A’ THEN ‘After’

WHEN ‘B’ THEN ‘Before’

END

FROM table...

• allows expansions of codes, etc.

• can also be done with conditionals, like...

CASE gets procedural in
SELECT

SELECT key, name,

CASE WHEN colval < 10 THEN ‘singledigit’

 WHEN colval < 100 THEN ‘doubledigits’

 ELSE ‘hundredsormore’ END

FROM table...

• allows labeling of ranges, etc.

CASE with conditions

SELECT order, amount

FROM orders

WHERE amount >

 (SELECT AVG(amount) FROM orders)

• returns above average orders

Subqueries for selection

More Subquery Selection

SELECT customer, order, amount

FROM orders

WHERE customer IN

 (SELECT customers FROM topcusts)

• selects only orders from customers listed
in topcusts

SELECT a.*

FROM orderLines a

WHERE NOT a.order IN

 (SELECT b.order FROM orders b)

• shows only those lines not attached to
orders

Finding unattached lines

... and lineless orders

SELECT a.*

FROM orders a

WHERE NOT a.order IN

 (SELECT DISTINCT b.order FROM orderLines
b)

• shows only those orders without lines

• When moving beyond SELECT to UPDATE
and DELETE

• Test WHERE clauses first using SELECTs

• Prove your test results are satisfactory first!

• Run to a file, then query to prove it
matches

Queries that change
things

Be sure beforehand!

• When ready, run first on test copy of data

• After testing, back up what will change first!

• Create and document your plan with
comments/notes

• Verify your plan, and protect your assets!

• Use caution, do it on test copies first, etc.

• Here’s the template for doing one...

• keys must specify unique records

• may be compound keys concatenated

• use CHAR(column) to concatenate
numeric keys

Updating related records

Related record template

• UPDATE tablea a SET a.updatecolumn =

 (SELECT b.value FROM tableb b

 WHERE b.key = a.key)

• WHERE a.key =

• (SELECT b.key FROM tableb b

 WHERE b.key = a.key)

• cusmas and cusnew were the same

• both are keyed by cusnbr

• changes made to cusnew’s cuscls are needed
in cusmas

• start by SELECTing the target set

Trying it out on a
customer table

Trying it out on
customer table II

SELECT a.cusnbr, a.cusnam, a.cuscls, b.cuscls

FROM cusmas a

JOIN cusnew b

ON a.cusnbr = b.cusnbr

WHERE a.cuscls <> b.cuscls

• shows record key, description, old and new classes

• proves correct records will be adjusted as desired

• Be sure you have the right records verified

• Make a copy of the data

• Run it against that copy

• Check that it worked

• Make a backup of what you’re going to
change

• Be careful and document, then read what was
written!

Before you go do it

UPDATE cusmas a SET a.cuscls =

 (SELECT b.cuscls FROM cusnew b

 WHERE b.cusnbr = a.cusnbr)
WHERE a.cusnbr =

 (SELECT b.cusnbr FROM cusnew b

 WHERE b.cusnbr = a.cusnbr)

• prove this works on a subset and it will
save a lot of time on processing a large
table which needs updating by key!

Scalar Subselect

• All SQL statements must be delimited by

/EXEC SQL and /END-EXEC statements

• Source is compiled with CRTSQLRPG command

• SQL statements are first evaluated by SQL
precompiler

• At execution time, errors are returned in
SQLCOD

• don’t define this, it will just be there

Embedding SQL in RPG
programs

Opening access path

• First declare a cursor to manage the path

C/EXEC SQL

C DECLARE CURSOR c1 FOR SELECT * FROM table1

C/END-EXEC

• execution of this code establishes the
access path

• “Read” a record from the path with a FETCH statement

C/EXEC SQL

C FETCH c1 INTO :dsname

C/END-EXEC

• :dsname is a data structure field for SELECT clause
record image

• use an external DS to pull in columns

• access data structure subfields to use data

Retrieving a row

• SQLSTT & SQLCOD are automatically included

• don’t need to be defined

• 0 = ok, other codes denote EOF, errors

SQLSTT IFEQ 0

 EXSR PROCESS

 ENDIF

Check state

... and close

• close the path with a CLOSE cursor-name

C/EXEC SQL

C CLOSE c1

C/END EXEC

CREATE TRIGGER new_hire

 AFTER INSERT ON employee

 FOR EACH ROW MODE DB2SQL

 UPDATE company_stats SET nbemp = nbemp + 1

SQL Trigger example 1.1

SQL Trigger example 1.2

CREATE TRIGGER former_employee

 AFTER DELETE ON employee

 FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

 UPDATE company_stats SET nbemp = nbemp - 1;

 END

• 1.1 & 1.2 together keep a count of employees updated

CREATE TRIGGER reorder

 AFTER UPDATE OF onhand, max_stocked ON parts

 REFERENCING NEW_TABLE AS ntable

 FOR EACH STATEMENT MODE DB2SQL

 BEGIN ATOMIC

 (SELECT ...)

 END

SQL Trigger example 2.1

SQL Trigger example 2.2

(...BEGIN ATOMIC...)

 SELECT issue_ship_request(max_stocked - on_hand,

 partno)

 FROM ntable

 WHERE on_hand < 0.10 * max_stocked;

 END

• only runs once per statement, finds rows where stock is low and
runs UDF issue_ship_request for each one

CREATE TRIGGER sal_adj

 AFTER UPDATE OF salary ON employee

 REFERENCING OLD AS old_emp

 NEW AS new_emp

 FOR EACH ROW MODE DB2SQL

 WHEN (new_emp.salary > old_emp.salary * 1.2))

 BEGIN ATOMIC

 (do something)

END

SQL Trigger example 3.1

SQL Trigger example 3.2

(BEGIN ATOMIC...)

 SIGNAL SQLSTATE ‘75001’ (‘Invalid Salary Increase

 exceeds 20%’);

END

• throws SQL exception to requestor

CREATE PROCEDURE update_salary_1

 (IN employee_number CHAR(10),

 IN rate DECIMAL(6,2))

 LANGUAGE SQL MODIFIES SQL DATA

 UPDATE corpdata.employee

 SET salary = salary * rate

 WHERE empno = employee_number

• declares parameters and runs statement with columns & parms

SQL Stored Procedure
example

SQL Stored Procedure
components

• expand beyond single statement with SQL
control statements

• CALL, CASE, FOR, IF, ITERATE, LEAVE,

LOOP, REPEAT, RETURN, WHILE

• run from client or with SQL CALL from
another procedure

• see Robert Andrews in Session 5!

• check out http://www.midrange.com

• email me directly at...

• jromeh@aol.com or jromeh@comcast.net

• will be glad to help when there’s time

• it’s always good to have a sounding board

• thanks to the many folks who have served
in this role for me!

Get help with it...

