SQL on iSeries:

Concepts and Implementations

Higher Productivity iSeries Programming Using SQL

By Thibault Dambrine

This Presentation

= SQL Data Definition Language: DDL
= Data Manipulation Techniques with SQL
= Implementing SQL

= Interpreted SQL

=« Compiled SQL
=« SQL Stored Procedures
=« SQL Functions

= SQL Performance Considerations

DDL: SQL Terminology

iSeries SQL

Library Collection or Schema
Physical File Table

Record Row

Field Column

Logical File View or Index

DDL: Data Definition Language
- Used to:

s Define Tables
= Alter Tables

= [ables defined with DDL can be accessed
with both SQL and Traditional languages
like RPG/C/COBOL

DDL Limitations:

= Tables created with DDL can support
ONE MEMBER ONLY

= Tables or Views using long names (up to
128 characters) will not be visible with
iISeries commands DSPOBID and DSPFD

A Word about NULLs

= The NULL value is effectively equivalent to
"UNKNOWN"

= NULL is DIFFERENT BLANK

= Assigning a value of NULL:

UPDATE TABLE A SET USER NAME = NULL

= Comparing a value with NULL:

UPDATE TABLE A SET COLUMN_ A ='NOT
FILLED'

WHERE LAST NAME IS NULL

DDL Coding Example: A SIMPLE TABLE

CREATE TABLE ER100F
(

BATCH_ID FOR BTCHID NUMERIC(10) NOT NULL,
SOURCE_FACILITY FOR SRCFAL CHAR(30) NOT NULL,
SOURCE_DESCRIPTION FOR SRCDSC VARCHAR (100) NOT NULL,
LOAD TIMESTAMP FOR LDTMSP TIMESTAMP NOT NULL

)

LABEL ON ER100F (SOURCE_FACILITY TEXT IS
'Source Facility ');

LABEL ON ER100F (BATCH_ID TEXT IS
'Batch ID "),

LABEL ON ER100F (LOAD_TIMESTAMP TEXT IS
'Load Timestamp');

LABEL ON TABLE ER100F IS 'Test Data Fact Table' ;

= Equivalent of a Physical File

DDL Coding Example: A UNIQUE Index

CREATE UNIQUE INDEX ER100FIDX ON ER100F
(
BATCH_DATE,
BATCH_1ID

= Equivalent of a Logical File
= Visible with DSPDBR Command

Creating a VIEW :
DDL Coding Example

CREATE VIEW MA PROJ
AS SELECT * FROM PROJECT
WHERE SUBSTR (PROJNO, 1,

'MA'

2)

= Equivalent of a Logical File with a SELECT

= Visible with DSPDBR Command IF the
VIEW name is 10 characters or less

DDL Coding Examples : A more
complex view

CREATE VIEW RSLTS_ABOVE_AVG AS

SELECT MR.SOURCE_FACILITY, MR.BATCH_1ID,
MR .MATERIAL_ TYPE, MR.MATERIAL_NAME,

MR .COMPONENT NAME, MR.ACTUAL_ RESULTS
FROM MAT_RESULTS MR

WHERE MR.ACTUAL_ RESULTS >
(SELECT AVG (AV.ACTUAL_ RESULTS) FROM MAT_RESULTS AV)

Refining a data selection from a VIEW:

SELECT * FROM RSLTS ABOVE_AVG ORDER BY SOURCE_FACILITY

Altering Existing Tables with DDL

= Adding a new column

ALTER TABLE EQP_ TABLE ADD COLUMN
EQUIPMENT_ CATEGORY FOR EQPCAT CHAR(10)

= Removing a column

ALTER TABLE EQP_TABLE
DROP COLUMN EQUIPMENT_ CATEGORY

Setting up ([e
Constraints In <
DEPT_1ID CHAR (2),

SQL DEPT NAME VARCHAR (20),
PRIMARY KEY (DEPT ID))

= Setting up a Primary Key

with existing tables m——)-
CREATE TABLE

EMPLOYEE_ TABLE

= Setting up a Primary Key and (
Parent/Child Constraint (when EMP NUMBER INT,
creating parent/child tables) EMP_NAME VARCHAR (20)
p A — DEPT ID CHAR(2),
ALTER TABLE PRIMARY

EMPLOYEE TABLE ADD UMR
CONSTRAINT CSTEMPDPT KEY (EMP_NUMBER) ,
FOREIGN KEY DEPT_1ID FOREIGN KEY (DEPT_1ID)
REFERENCES REFERENCES

DEPT_TABLE (DEPT_ID) \ DEPT TABLE (DEPT_ID))

Dealing with SQL Object Names
Longer than 10 Characters

= DDL allows for table names longer than

10 characters

s DSPFD CANNOT see these tables
s DSPOBJD CANNOT see these tables

= Keeping track of these tables can only
be done through the SQL CATALOG

= SQL CATALOG Files are stored in
'S

= QSYS2/SYS* system table objec

Most Used Catalog Tables

Catalog Table Description
SYSCOLUMNS Columns
SYSCST Constraints
SYSFUNCS Functions
SYSINDEXES Indexes
SYSKEYS Keys
SYSPROCS Procedures
SYSTABLES Tables
SYSTRIGGER Triggers
SYSVIEWS Views

Finding SQL Object Names Longer
than 10 Characters

= To find a table with a long name

s SELECT TABLE_ NAME, TABLE_SCHEMA
FROM QSYS2/SYSTABLES WHERE
TABLE_NAME = 'MONTH_ TO_ DATE_SALES'

= T0 find the columns in a long file name:

m SELECT * FROM QSYS2/SYSCOLUMNS
WHERE TABLE_ NAME =
"MONTH_TO_DATE_SALES'

Real Life Use for Catalog Tables

= Where is this column (field) name used?

m SELECT * FROM QSYS2/SYSCOLUMNS
WHERE COLUMN_NAME = 'GLMCU'

= Are the number of columns (fields) for this
table the same in all schemas (libraries)?

s SELECT TABLE NAME, TABLE_ SCHEMA,
COUNT (*) FROM QSYS2/SYSCOLUMNS
WHERE TABLE NAME = 'F0911' GROUP
BY TABLE_NAME, TABLE_SCHEMA

DDL Summary

= With DDL, you can create or alter tables

= DDL allows table and column names to be
longer than 10 characters

= All DDL Objects can be found in the SQL
Catalog Tables

= All SQL Catalog files start with SYS* and can
be found in library QSYS2

Part 2
CODING in SQL:
MAKE IT HAPPEN!

= SQL JOIN

= SQL Update

= Group BY

= Casting

= Date & Time Manipulation

SQL Joins

Join or Inner Join
Left/Right Join or Left/Right Outer Join
Left/Right Exception Join

Cross Join

JOIN or INNER JOIN

Most commonly used join

Returns as many rows as there are matches,
No more, no less

Returns values for all columns

INNER Join Example: Getting
only the exact key matches

SELECT

EM.EMPLOYEE NBR,
EM.EMPLOYEE_ NAME,
BM.EMPLOYEE_ BENEFITS DESC

FROM EMPLOYEE_MASTER EM
INNER JOIN BENEFITS MASTER BM
ON EM.EMPLOYEE_NBR BM.EMPLOYEE_NBR

EM.EMPLOYEE_NBR | EM.EMPLOYEE_NAME |BM.EMPLOYEE_BENEFITS_DESC

1234 John Smith TOP DENTAL
4567 Garth Johnson BOTTOM DENTAL
7342 Gene Lockhart FULL MEDICAL

121 Steve Carson FULL MEDICAL

LEFT JOIN or LEFT OUTER JOIN
(1 of 2)

= Returns values for ALL the rows on the left
table and values from the joined table that
match

= When a match is not found in the joined file
(to the right), NULLs are returned

= NULL values can be overridden with the
IFNULL operand

LOJ Example: Getting the matches,
the data from the left table and defaults
from the right table if no values found

SELECT
EM.EMPLOYEE_NBR,
EM.EMPLOYEE_NAME,

IFNULL (BM.EMPLOYEE BENEFITS DESC,
‘Benefits not yet allocated’)

FROM EMPLOYEE MASTER EM

LEFT OUTER JOIN BENEFITS MASTER BM ON
EM.EMPLOYEE_NBR = BM.EMPLOYEE_ NBR

LEFT JOIN or LEFT OUTER JOIN

Results

LOJ Results WITHOUT IFNULL default override
EM.EMPLOYEE_NBR | EM.EMPLOYEE_NAME | EM.EMPLOYEE_BENEFITS_ DESC
1234 John Smith TOP DENTAL
4567 Garth Johnson BOTTOM DENTAL
852 Brian Evans -
121 Steve McPhearson -

LOJ Results WITH IFNULL default override

EM.EMPLOYEE_NBR

EM.EMPLOYEE_NAME

EM.EMPLOYEE_BENEFITS_DESC

1234 John Smith TOP DENTAL
4567 Garth Johnson BOTTOM DENTAL
852 Brian Evans BENEFITS NOT YET ALLOCATED

121

Steve McPhearson

BENEFITS NOT YET ALLOCATED

USING MORE THAN ONE LOJ Table

INSERT INTO EMPLOYEE_DATA
(

EMPLOYEE_NBR,
EMPLOYEE_NAME,
EMPLOYEE_BENEFITS_DESC,
EMPLOYEE_SALARY,
SALARY_CATEGORY

)

SELECT

EM.EMPLOYEE_NBR,

EM.EMPLOYEE_FIRST_NAME || ¢ | | EM.EMPLOYEE_LAST_NAME,

IFNULL(BM.EMPLOYEE_BENEFITS_DESC, ‘New Employee - Benefits not yet allocated’),

IFNULL(PM.YEARLY_SALARY, 0),

CASE
WHEN PM.YEARLY_SALARY<100000 THEN 'REGULAR EMPLOYEE'
WHEN PM.YEARLY_SALARY<=100000 THEN 'EXECUTIVE EMPLOYEE'
WHEN PM.YEARLY_SALARY IS NULL THEN 'UNKNOWN - INVESTIGATE'
ELSE 'DA BOSS'

END

FROM EMPLOYEE_MASTER EM
LEFT OUTER JOIN BENEFITS_MASTER BM ON EM.EMPLOYEE_NBR = BM.EMPLOYEE_NBR
LEFT OUTER JOIN PAYROLL_MASTER PM ON EM.EMPLOYEE_NBR = PM.EMPLOYEE_NBR;

LEFT EXCEPTION JOIN

= Returns only the rows from the left table
that do not have a match in the right table

SELECT EM.EMPNO, EM.LASTNAME,
EM.PROJNO FROM EMPLOYEE EM

EXCEPTION JOIN PROJECT PJ
ON EM.PROJNO = PJ.PROJ#

CROSS JOIN

s Also known as "CARTESIAN PRODUCT"

= Can be specified with the CROSS JOIN
syntax or by listing two tables without a
WHERE clause

= Returns a row in the result table for each
combination of rows from the tables being
joined

SELECT * FROM FILEA CROSS JOIN FILEB

SELECT * FROM FILEA, FILEB

CROSS JOIN EXAMPLE

EM.EMPNBR | EM.EMPNAME BEN_NBR | EM.EMPLOYEE_BENEFITS_DESC
1234 John Smith 1111 TOP DENTAL

4567 Garth Johnson 2222 BOTTOM DENTAL
852 Brian Evans

121 Steve McPhearson

CROSS JOIN Results

EM.EMPNBR | EM.EMPNAME

121 Steve McPhearson 1111 TOP DENTAL

121 Steve McPhearson 2222 BOTTOM DENTAL
852 Brian Evans 1111 TOP DENTAL
852 Brian Evans 2222 BOTTOM DENTAL
1234 John Smith 1111 TOP DENTAL
1234 John Smith 2222 BOTTOM DENTAL
4567 Garth Johnson 1111 TOP DENTAL
4567 Garth Johnson 2222 BOTTOM DENTAL

CASTING and Joining Tables With
Incompatible Keys using CAST

SELECT CAST (ZIP_NUMBER AS CHAR(5)) FROM FILEB

SELECT INT (SUBSTRING (TELEPHONE, 1, 3)) AREA_CODE
FROM FILEA

= Tips & Techniques

Joining with Cast Values:
SELECT * FROM FILE A, FILE C
WHERE FILEA.INT KEY

= CAST (SUBSTRING (TELEPHONE, 1, 3) as INT)

Join Summary

Inner Join
Left or Right Outer Join
Left or Right Exception Join

Cross Join

Update/Delete with SQL

s Use of SQL for UPDATE or DELETE

Updating Data in a Table Using a
Correlated Query

UPDATE EMPLOYEE TABLE EM
SET (EM.FIRST_ _NAME, EM.LAST NAME) =
(SELECT UPDT.FIRST_NAME, UPDT.LAST NAME
FROM NEW NAMES UPDT)
WHERE EXISTS

(SELECT *
FROM NEW NAMES UPDT WHERE UPDT.ID =
EM.ID)

= Note the use of TWO WHERE clauses

= WARNING: Will crash if the second select
vields more than one row!

Updating Data in a Table Using MAX()
value to avoid possible duplicates

UPDATE EMPLOYEE TABLE EM
SET (EM.ID) =
(SELECT MAX (UPDO.ID) FROM UPDATE TABLE UPDO)
WHERE EXISTS

(SELECT * FROM UPDATE_ TABLE UPD1
WHERE

UPD1.FIRST NAME
AND UPD1.LAST NAME
AND UPD1.ADDRESS 1
AND UPD1.ADDRESS 2
AND UPD1.ADDRESS 3

) ;

EM.FIRST NAME
EM.LAST NAME
EM.ADDRESS_1
EM.ADDRESS_2
EM.ADDRESS_3

Updating Data in a Table Using a
Correlated Query with a pre-selection
Note the THREE WHERE CLAUSES

UPDATE FGLDETOS FGL
SET
(
FGL.ADDRESS_BOOK_NUMBER ,
FGL.DW_STS_ADDRESS_BOOK_NUMBER)=

(SELECT A.QlANSR, 'O
FROM F590101A A
WHERE A.QlAN8 = FGL.ADDRESS BOOK NUMBER
AND A.QlAN8 != A.QlANSR
AND A.QLANSR > 0
AND FGL.ROW_SOURCE='A'

)

WHERE EXISTS
(SELECT *
FROM
WHERE
AND
AND
AND

F590101A Al
Al .Q1ANS8 =
Al .QI1ANS8 !=
Al .Q1ANSR > O
FGL.ROW_SOURCE="A"

FGL.ADDRESS_BOOK_NUMBER
Q1ANSR

Deleting Data in a Table
Using a Correlated Query

(DELETE FROM EMPLOYEE_TABLE EM
WHERE EXISTS

(SELECT * FROM UPDATE TABLE UPDT WHERE
UPDT.ID = EM.ID);

= Note again the use of TWO WHERE clauses

Update/Delete Summary

= UPDATE or DELETE in SQL is done with
correlated sub-queries

= Ensure you have unique values to update
with in an update SQL statement

Value-Added Data using SQL: Using
the GROUP BY function

= Using the keyword GROUP BY
= HAVING vs. WHERE

= Using DISTINCT
= Dealing with Duplicate Values

= Date/Time Manipulations

Aggregating Data with GROUP BY

= Find distinct values, regardless of how many rows in a
table — AND sum or count of values

SELECT CITY NAME,

COUNT (*) ORDERS_COUNT,
SUM (ORDER_VALUE) ORDERS_VALUE,

AVG (ORDER_VALUE) AVERAGE,

MIN (ORDER_VALUE) MIN ORDER,
MAX (ORDER_VALUE) MAX ORDER FROM ORDERS
GROUP BY CITY NAME ORDER BY 4

CITY_ NAME 01;‘;;1::— ORDERS_VALUE AVERAGE MIN_ORDER | MAX ORDER
New York 2324.00 45646546.00 19641.37 123.00 852.00
Phoenix 3434.00 544696445.00 158618.65 1822.00 5236.00
Chicago 4553.00 834098534.00 183197.56 268.00 7411.00
Houston 2.00 554556.00 277278.00 965.00 1258.00

Aggregating Data — HAVING Clause

= For comparing individual rows, use WHERE
= For aggregated values, use HAVING

SELECT STORE_NAME, STORE_STATE, SUM (SALES)
STORE_SALES
FROM STORE_ INFORMATION
WHERE STORE STATE = 'IL'
GROUP BY STORE NAME, STORE_STATE

HAVING SUM(SALES) > 1500

STORE__NAME STORE__STATE STORE__SALES

Ontario Street IL 3434
Michigan Avenue IL 4553

Finding Distinct Values in a Table
with SQL

= Find distinct values, regardless of how many rows in a
table

SELECT DISTINCT CITY_NAME, ZIP_ CODE FROM
ORDERS WHERE CITY NAME = 'CHICAGO'
ORDER BY ZIP_CODE

CITY Zip Code
CHICAGO 60606
CHICAGO 60607
CHICAGO 60608
CHICAGO 60609
CHICAGO 60610
CHICAGO 60611
CHICAGO 60612

Finding Duplicate Keys in a Table

(SELECT ADDRESS 1, ADDRESS 2,
ADDRESS 3, COUNT (*)
FROM CONTACT_ TABLE
HAVING COUNT (*) > 1
GROUP BY ADDRESS 1, ADDRESS 2,
ADDRESS_3

= Very Common SQL Example
= Note the use of the GROUP BY clause

= Unigue Keys still best to keep duplicates out
when possible!

= Useful to clean up raw data

Removing Duplicate Rows In A
Table (Address Example)

(DELETE FROM CONTACT TABLE AD1
WHERE AD1.ID NUMBER <
(
SELECT MAX (AD2.ID_NUMBER)
FROM CONTACT TABLE AD2
WHERE (AD1.ADDRESS 1 = AD2.ADDRESS 1 AND
AD1.ADDRESS 2 = AD2.ADDRESS 2 AND
AD1.ADDRESS 3 = AD2.ADDRESS 3)

)

= Note the use of the MAX clause

= Note the use of Correlation Names AD1 and
AD2 - attacking the same table twice with
two different correlated names

Extracting ONLY UNIQUE (no
duplicate) Values USING DISTINCT
with ALL the columns in the table

SELECT DISTINCT
PT1.CLERK,

PT1.TRANS NUMBER,
PT1.ITEM,

PT1.SIZE,

PT1.COLOUR,
PT1.DOLLAR_AMT,
PT1.POLLING TIME

FROM POLLING TABLE PT1

Time & Date Values on iSeries:
a Very useful Data Type

The TIMESTAMP value on iSeries
records time to ONE MILLIONTH of a
SECOND

Measure time values conveniently
with SQL, from dates to seconds with
very little effort

Date & Time Data Manipulations

= DATE and TIMESTAMP data types allow
easy date and time calculations

SELECT CURRENT TIMESTAMP

+ 7 hours - 5 minutes - 10 seconds
FROM SYSIBM/SYSDUMMY1l

2005-06-21-09.07.10.553453

SELECT CURRENT DATE + 30 DAYS FROM SYSIBM/SYSDUMMY1l
05/07/21

SELECT

CHAR (DATE (TIMESTAMP ('2005-06-21-09.07.10.553453")
+7 DAYS)) FROM SYSIBM/SYSDUMMY1

05/06/28

SELECT * from ORDER TABLE WHERE
CURRENT_TIMEATAMP - ORDER_DATE < 30 DAYS

SYSTEM Date & Time RETRIEVAL

= TIME Retrieval using CURTIME function
SELECT curtime () FROM sysibm/sysdummyl

= DATE Retrieval using CURDATE function
SELECT curdate () FROM sysibm/sysdummyl

= CURRENT TIMESTAMP Retrieval using NOW
function

SELECT now() FROM sysibm/sysdummyl

= GMT TIMESTAMP using NOW and TIMEZONE

m select now()—- current timezone from
sysibm/sysdummyl

Value Added DATA Recap

= Group BY
= (Casting
= Date & Time Data Type

= Using the keyword GROUP BY
= HAVING vs. WHERE

= Using DISTINCT
= Dealing with Duplicate Values

Part 3
SQL Implementation

= Interpreted SQL

= SQL Stored Procedures

Interpreted SQL

= Used with the RUNSQLSTM CL Command
= SQL commands are stored in a Source Member

s Format:

RUNSQLSTM
SOURCELIB/SOURCEFILE SOURCEMBR

Interpreted SQL Characteristics

Must have an output if there is a select

Can be used for Set Processing ONLY (as
opposed to individual rows)

Cannot receive parameters
Cannot use loops

Can use CASE Statements but not
IF/Then/Else

Running Interpreted SQL

Can be run with the RUNSQLSTM CL command
RUNSQLSTM LIBRARY/FILE MEMBER

Sample Source:

INSERT INTO EXTRACT

SELECT INPUT.FIRST_ NAME,
INPUT.LAST NAME, INPUT.SALARY

FROM PAYROLL INPUT
WHERE (INPUT.SALARY IS > 1000000);

SQL Stored Procedures
Characteristics

Compile into Executable CLE type *PGM objects
Faster than interpreted code — MOST TIMES
Can be debugged like any CLE program

Debug to retrieve SQL Optimizer messages

Can use Parameters, Variables
Logic constructs (if/then/else, do/for loops)
The ability to take advantage of compiled functions

Stored Procedure Example 1:
A simple Update

CREATE PROCEDURE PROC_NAME OPEN CURSOR_UPD ;
LANGUAGE SQL
WHILE (SQLCODE = 0)
—— START PROCEDURE
—— This procedure will, for each FETCH CURSOR_UPD INTO WORK TIMESTAMP ;
row of table ER400SX, retrieve the
current timestamp

—— and update the column UPDATE ER400SX

PUBLISH_TMS within ER400SX SET PUBLISH _TMS = CURRENT TIMESTAMP,
TIME_ELAPSED = DAY (CURRENT_TIME_STAMP

BEGIN — WORK_TIMESTAMP)

WHERE CURRENT OF CURSOR_UPD ;
—— DECLARE CURSOR VARIABLES

DECLARE PUBLISH TMS TIMESTAMP ; END WHILE ;
DECLARE WORK_TIMESTAMP TIMESTAMP ;

DECLARE SQLSTATE CHAR(5) DEFAULT CLOSE CURSOR_UPD ;
'00000" ;

DECLARE AT_END INT DEFAULT O ; —— END PROCEDURE
DECLARE SQLCODE INT DEFAULT O ; END

DECLARE CURSOR_UPD CURSOR FOR
SELECT PUBLISH TMS FROM ER400SX
MAIN;

SET AT END = 0;

SQL Stored Procedure Tips

= The code begins with
CREATE PROCEDURE PROC_NAME
where PROC_NAME will be the name of the
procedure name — NOT the MEMBER NAME

= The procedure will be created in the Current
Library

= [he CREATE PROCEDURE statement will not
replace an existing procedure

Stored Procedure Example (2) — a Correlated Update

CREATE PROCEDURE DWCVGDOSO1

—— MAIN UPDATE LOOP. UPDATE THE MAIN FILE USING THE SECONDARY FILE.
LANGUAGE SQL

SET OPTION OUTPUT = *PRINT, DBGVIEW = *SOURCE
WHILE (SQLCODE = 0) DO

—— START PROCEDURE
FETCH CURSOR _MAIN INTO
CURRENT_ADDRESS_BOOK_VALUE,
NEW_ADDRESS_BOOK_VALUE,
CURRENT_SUR_KEY ;

BEGIN

—— DECLARE CURSOR VARIABLES

DECLARE SQLSTATE CHAR (5) DEFAULT '00000' ;
UPDATE FGLDETOS FGL
DECLARE SQLCODE INT DEFAULT O ; SET
DECLARE AT_END INT DEFAULT 0 ; (
DECLARE CURRENT_ADDRESS_BOOK_VALUE INT ;
FGL.ADDRESS_BOOK_ NUMBER ,
DECLARE NEW_ADDRESS_BOOK_VALUE INT ;
FGL.DW_STS_ADDRESS_BOOK_NUMBER
DECLARE CURRENT_SUR_KEY INT ;)
(
—— CURSOR 1 - FGLDET BEING UPDATED NEW_ADDRESS_BOOK_VALUE , —— REPLACE WITH NEW VALUE
'’ —— CHANGE TO OPEN
)
DECLARE CURSOR_MAIN CURSOR FOR WHERE FGL.DW_SURROGATE_KEY = CURRENT_SUR_KEY H
SELECT

GLANS,

QlANSR, END WHILE ;

DW_SURROGATE_KEY

FROM FGLDETOS AA CLOSE CURSOR_MAIN ;

JOIN F590101A BB

ON BB.QlAN8 = AA.GLANS END

AND BB.Q1AN8 <> BB.QlANSR
AND BB.Ql1ANSR > 0

AND AA .ROW_SOURCE = 'A' ;
—— END OF PROCEDURE --

OPEN CURSOR_MAIN ;
SET AT_END = 0;

Steps to Create and Run a Stored
Procedure

Code the stored procedure in a source member

Create the stored procedure in your current
library (CURLIB) using RUNSQLSTM

= This will result in the stored procedure to be
created as an ILE C pgm, with your SQL code
embedded within

Syntax: CALL PROCEDURE_NAME

NOTE: SQL procedure objects
have to be called in an SQL environment

4 Ways to call an SQL Stored Procedure

= Interactively — from the STRSQL command
prompt

= In Batch — using the RUNSQLSTM with an
SQL source member containing the CALL
to the SQL procedure

= Using the QMQRY (Query Manager Query)
— The instruction is STRQMQRY and the
QMQRY member should contain the call

= Using Dan Riehl's EXCSQL

Debugging an SQL Stored Procedure

= [0 be debuggable, the procedure has to be
created in a debuggable mode

= RUNSQLSTM with DBGVIEW(*LIST) or
DBGVIEW(*SOURCE)

= DBGVIEW(*LIST) provides a C view of the
code

= DBGVIEW(*SOURCE) provides an SQL view of
the code

= Once the procedure is compiled,
use STRDBG PGM(PROC_NAME)
UPDPROD(*YES)

SQL Stored Procedure File Operation
Debugging — SQLCODE

= SQLCODE is a results indicator variable
affected by each database operation

= - Zero value in the SQLCODE indicates
success

= - To see the value of the SQLCODE
variable, use EVAL SQLCODE

= - SQLCODE is actually part of a larger
system data structure. To see it, use
EVAL sqglca

SQL Modular Programming with
Functions — Recycle that code!

= - SQL FUNCTIONS

= Allow creation of your own functions in the
same way that you can create your own
commands

= Are Different from SQL Procedures:

= - procedures can receive and return many
parameter values

= - functions can receive many but will only return
a single parameter value.

The Mechanics of SQL Functions

To compile a function, use the
RUNSQLSTM command, just like
Stored procedure

creating a

SQL functions compile into objec
*SRVPGM

s of type

This means the function cannot be called

on Its own

SQL Functions — A simple Example

CREATE FUNCTION HOW_OLD (INDATE DATE)
RETURNS CHAR (8)

LANGUAGE SQL
BEGIN

DECLARE HOW_OLD CHAR(8);
DECLARE RETVAL CHAR(8);

CASE
WHEN INDATE < CURRENT DATE - 60 DAYS THEN
SET RETVAL = 'VERY OLD',
WHEN INDATE < CURRENT DATE - 30 DAYS THEN

SET RETVAL = 'OLD';
ELSE
SET RETVAL = 'FRESH';
END CASE;
RETURN (RETVAL) ;

END

SELECT HOW_OLD (CURRENT DATE - 33 DAYS) FROM SYSIBM/SYSDUMMY1l

SQL Functions — A simple Example
Translating a JDE Julian Date to MDY

SQL Function Code:

CREATE FUNCTION XJDETOMDY (IN JDE DATE INT)
RETURNS DATE
LANGUAGE SQL
BEGIN
DECLARE OUT YMD DATE ;
SET OUT YMD = DATE (CHAR(1900000+IN JDE DATE)) ;
RETURN (OUT YMD) ;

END

Execution:
CYYJJJ

SELECT XJDETOMDY (105144) FROM SYSIBM/SYSDUMMY1
05/24/05

SQL Functions — A simple Example
Translating a MDY Date to a JDE Julian Date

SQL Function Code:

CREATE FUNCTION XMDYTOJDE
(IN_YMD_DATE DATE)

RETURNS INT

LANGUAGE SQL

BEGIN
DECLARE OUT_JDE_DATE INT ;
DECLARE OUT_JDE_PART1 CHAR(1);
DECLARE OUT_JDE_PART2 CHAR(2);
DECLARE OUT_JDE_PART3IINT ;
DECLARE OUT_JDE_PART3C CHAR(3) ;

CASE
WHEN IN_YMD_DATE <
DATE('01/01/2000')
THEN SET OUT_JDE_PART1 ='0' ;
ELSE
SET OUT_JDE_PART1='"1' ;
END CASE ;

Execution:

SET OUT_JDE_PART2 = SUBSTR(CHAR(IN_YMD_DATE),
7,2);

SET OUT_JDE_PART3I = DAYS(IN_YMD_DATE) -
DAYS(DATE('01/01/' | | OUT_JDE_PART2))U ;
CASE
WHEN OUT_JDE_PART3I < 10

THEN SET OUT_JDE_PART3C ='00' | |
CHAR(OUT_JDE_PART3I) ;

WHEN OUT_JDE_PART3I < 100

THEN SET OUT_JDE_PART3C ='0' | |
CHAR(OUT_JDE_PART3I) ;

ELSE
SET OUT_JDE_PART3C = CHAR(OUT_JDE_PART3I) ;
END CASE ;

SET OUT_JDE_DATE = INT(OUT_JDE_PART1 | |
OUT_JDE_PART2 | | OUT_JDE_PART3C) ;

RETURN (OUT_JDE_DATE) ;
END

SELECT XMDYTOJDE (DATE ('05/24/05')) FROM SYSIBM/SYSDUMMY1l

105144

Implementing SQL Recap

= Interpreted SQL

= SQL Stored Procedures
= Debugging
= SQL Functions

Part 4
Performance & Security

s Performance
= Data Retrieval Tips

= Security

Real life SQL Rule Number 1:
Indexes, Indexes, Indexes

SQL performance can be fantastic, but it
can also be terribly slow if not coded

properly or if no index is recognized by the
DB2 SQL Optimizer

Code your SQL join statements with keys
that match the order of the indexes

Look for Optimizer Suggestions

Make the most out of your indexes:
The Cardinality Rule

= Most efficient indexes for SQL processing are
ones that are created in order of cardinality

« For example: in a table containing 10,000 rows
with an index composed of 3 keys:

= First key, Company Division has 4 possible values
= Second key, Department has 48 possible values
= Third key, Employee has 100,000 values

= Make your index unique if you can

Surrogate Keys — Beyond Indexes

= A Surrogate Key is an arbitrary, unique
numeric key

= Unigue Numeric keys are fastest for index
access. If your key is too long or not
unique, a surrogate key can improve your
access performance, especially on updates

USE CAST ONLY IF THERE IS NO
OTHER SOLUTION

= SQL allows joining data with different key
types using CASTING

= Practical when no other solutions but
precludes the use of indexes => SLOW
PERFORMANCE

Select for Insert: Be Explicit

-Using SELECT * on an insert is an exposure if you
make database changes

- Explicit column selects are safer

INSERT INTO

INSERT INTO EMPLOYEE DATA

EMPLOYEE_DATA :
(
EMPLOYEE_NBR, EMPLOYEE_NBR,

EMPLOYEE_LAST NAME, EipLoiEgzigzggg ’
SALARY CATEGORY -

)
)
SELECT SELECT
* EM.EMPLOYEE_NBR,
EM.EMPLOYEE_LAST NAME,
FROM EMPLOYEE_MASTER; EM.EMPLOYEE_ CATEGORY

FROM EMPLOYEE_ MASTER EM;

SQL Testing Guidelines

Test for Scale: What works on a small

sample may be a dog with a large amount
of data

Test for number of rows: SQL processing
is primarily about processing SETS of data.
Make sure you create test cases where
you can predict the resulting number of
records, especially on JOIN statements

Get the Most out of your
WHERE Clauses

Order your WHERE Clauses by putting the
comparisons in order of efficiency:

>, >=, <, <=
LIKE
<>

FETCH FIRST keyword

= Limit your results with FETCH FIRST

SELECT * FROM CUSTOMER AORDER BY
A.SALES DESC FETCH FIRST 5 ROWS ONLY

BATCH vs Interactive

= USE BATCH when possible

= Batch mode processing is MUCH FASTER
than interactive mode

Method to find the SQL Optimizer suggestions to
improve performance (1 of 2)

1) Go in debug and change the job to record
all activities and second level text

« STRDBG UPDPROD(*YES)

= CHGJOB LOG(4 4 *SECLVL)
Note: with *SECLVL, both the message text
and the message help (cause and recovery) of
the error message are written to the job log

Method to find the SQL Optimizer
suggestions to improve performance (2 of 2)

2) Call Stored Procedure from an SQL environment

3) Review the job log and look
for the following messages:
"*x** Starting optimizer debug message for query"

Or
"Access path suggestion for file"

The system will typically make precise index
suggestions, or not suggest at all

COMPILED vs INTERPRETED SQL

Main advantage of interpreted code is
simplicity
= Simplicity in coding (no compiling)
Main advantage is that compiled code
allows
= Variable manipulation
= Do-loops
« If-then-else constructs
= Record-by-record processing
= Retrieval of SQL Optimizer Messages

Promotion & Implementation
Considerations

Large scale use of SQL in production
requires some promotion control planning

SQL can be implemented without
compilation — Ensure your security is setup
so that you control what can enter your
production SQL source files

SQL is different from other conventional
languages. Ensure your promotion control
software can handle SQL code/objects

Using SQL to Retrieve Data from a
REMOTE Database

= [ype in “CONNECT” then press F4 in an
interactive STRSQL session

= CONNECT TO RMT_SYS USER
USER NAME USING 'PASSWORD'

= Allows data retrieval with SQL from a
remote iSeries

= NOTE: The password is visible on the
screen when called interactively

SQL access on iSeries:
ODBC Accessibility

You can reach your data using SQL on
Microsoft Excel and an ODBC connection

This may be a security exposure
Verify your ODBC security

PowerLock and other vendors have tools
to shut these down or authorize only
certain users

SARBOX Considerations

Auditors may ask:

Can SQL make "untraceable” changes in the
database?

AGAIN: Verify your ODBC security

Journal critical tables if audit trails are
absolutely necessary

Create your own EXCSQL command and
log the commands used

Revoke STRSQL and allow SQL access only
via EXCSQL

Performance & Security Recap

= Performance

= Indexes

= SQL Optimizer
= Data Retrieval Tips

= Using the SQL Optimizer

= ODBC Access, Keyword CONNECT
= Security

= Audit Considerations
= ODBC Access

What's Next?

Questions?

Email: dambrine@tylogix.com
Website: www.tylogix.com

Good Online SQL Tutorial Website:

http://www.w3schools.com/sql/default.asp

DB2 Personal Developer Website:
http://www-306.ibm.com/software/data/db2/udb/edition-pde.html

