215%-Century CL

Ted Holt

Senior Software Developer, Profound Logic

Senior Technical Editor, Four Hundred Guru

fourhundredguru@gmail.com

Today we’ll discuss . . .

Scope

Data

Structured programming
Subroutines

Built-in functions

Files and database
Miscellaneous enhancements

© N WU R WNRE

Final thoughts

Scope

Scope

Q: If you were designing a new computer language, would you include
support for arithmetic?

A: It depends. First you have to tell me the purpose of the language.

Scope

* CL falls into the category of job control languages.

* (It is fair to say that CL is more than a JCL, since CL not only controls
jobs, but all the operations on the system.)

* Job control languages do not need many of the capabilities of RPG
and other high-level application languages.

* CL was introduced in 1980 with the first shipment of the System/38
and remained largely unchanged until 2002 (V5R3).

* Somebody with clout persuaded IBM that CL was not robust enough.

Data

New Data Types

* Signed integer (*INT)
* Unsigned integer (*UINT)
* Pointer (*PTR)

* First new data types since 1980.

* Signed integer type is more straightforward than the %BINARY (%BIN)
function (but the %BIN function is not obsolete).

* Signed integer type is used by many APlIs.

dc1l &BytesAvail
dc1l &BytesRtn

Chgvar &BytesAvail %size(&Rcvvar)

Defined-on variables

* Allow one variable to overlay another in memory
* Similar in function (but not in syntax) to data structures in RPG

* Syntax:
STG(DEFINED) DEFVAR(defined-on-variable beginning-position)

* Default beginning position is 1

Defined-on variable example

dc1l &workDate *char 7
dcl &Century *char 1 stg(*defined) defvar(&workbate 1)
dc1 &bateYMD *char 6 stg(*defined) defvar(&orkDate 2)
dcl &Year *char 2 stg(*defined) defvar(&bateymMp 1)
dc1 &Month *char 2 stg(*defined) defvar(&bateymMp 3)
dcl &bay *char 2 stg(*defined) defvar(&bateymMp 5)
0o 9 8 1 2 2 5
I &workDate
(| &Century
I &DateYMD
I &Year
I &Month
[&Dbay

Pointers

* Store memory addresses
* The %ADDRESS (or %ADDR) function lets you set a pointer.
* The %OFFSET (or %OFS) function lets you do pointer arithmetic.

Structured programming

Looping — DOWHILE

* Top-tested loop
* Body of loop may not be executed at all

* Terminated by ENDDO

DOWHILE example

Not executed if
&LIBS is blank!

dcl &L1ibs *char 80
dcl &Lib *char 10

dowhile (&Libs *ne " ")
/* process the first Tibrary in the Tist */

chgvar &Lib &Libs
. do something with &Lib

/* remove the library that was just processed */
chgvar &Libs %sst(&Libs 11 70)

enddo

1. &LIBS is a list of library names, such as:
MYLIB YOURLIB HISLIB HERLIB BIGLIBNAME

2. &LIB is one library name.

3. The first CHGVAR command copies the first 10 bytes of &LIBS to &LIB. (We don’t need %SST
(substring) because CHGVAR truncates, but we could use %SST if we wanted to clarify our
intentions.)

MYLIB

4. After the system has done something with that library name, the second CHGVAR removes the
first library name from the list. After the first iteration, &LIBS looks like this:

YOURLIB HISLIB HERLIB BIGLIBNAME

5. The loop continues until all libraries have been processed.

Looping — DOUNTIL

* Bottom-tested loop
* Body is always executed at least once
* Terminated by ENDDO

Executed at
least once.

DOUNTIL example

dountil (&Status *eq '0'")
call grcvdtag (&DtaQ &DtaQLib &DtalLen &Dta &Wwait)
select
when (%sst(&ta 1 1) *1t '1l') then(chgvar &Status '0')
when (%sst(&ta 1 1) *eq '1l') then(call pgml)
when (%sst(&ta 1 1) *eq ‘2') then(call pgm2)
when (%sst(&ta 1 1) *eq ‘3') then(call pgm3)
endselect
enddo

Looping — DOFOR

* Top-tested loop

* Counted loop

* Terminating condition evaluated on each iteration (a “moving target”)
* Terminated by ENDDO

* Control variable must be an integer

* Loop increment can be positive or negative

DOFOR example

dc1l &inoptions *char 80 /* Tist of options */

dcT &Ndx *uint 2

dcl &Option *char 8

dcl &optoffset *uint 2 /* offset into the 1ist */

dc1l &ToReport *1g1

chgvar &0Optoffset 3

dofor var(&dx) from(1l) to(%bin(&inoptions 1 2))
chgvar &Option %sst(&inoptions &optoffset 8)
select

when (&0ption *eq REPORT) then(chgvar &ToReport '1l'")
when (&0ption *eq NOREPORT) then(chgvar &ToReport '0')
endselect
chgvar &optoffset (&optoffset + 8)
enddo

(See https://www.itjungle.com/2014/07/09/fhg070914-story02/ for the complete example.)

LEAVE and ITERATE

* LEAVE jumps to the statement immediately following the end of the

loop
* ITERATE jumps to the loop-control test

* Optional CMDLBL parameter allows you to specify which loop you

wish to LEAVE or ITERATE

Looping — Middle-tested loops

* Implemented with DOWHILE

DOWHILE ‘1’
. . . code that must run at least once
IF COND(. . .) THEN(CLEAVE)

. code that might not run at all
ENDDO

* Must include a conditioned LEAVE to stop the loop

Middle-tested loop example

dc1f schedule opnid(s)

Must be done at least once.

Test to leave loop or not

dowhile '1'

monmsg cpf0864 exec(leave) % May not be done at all.
if (&s_active *ne A) then(iterate

Case construct

* Implemented with SELECT/WHEN/OTHER/ENDSELECT keywords
* THEN may be null to ignore a case
* May be nested up to 25 levels deep

SELECT example (with keywords)

select

when (&Option *eq 0) +
then(chgvar &bDevOption ('ouTQ(' *cat &Optvalue *tcat ')'))

when (&Option *eq D) +
then(chgvar &bDevOption ('DEV(' *cat &Optvalue *tcat ')'))

otherwise +
cmd(chgvar &bevoption ('OUTQ(*DEV)'))

endselect

SELECT example (without keywords)

select

when (&Option *eq 0) +
chgvar &bevOoption ('ouTQ(' *cat &Optvalue *tcat ')')

when (&0Option *eq D) +
chgvar &bevoOption ('DEV(' *cat &0Optvalue *tcat ')')

otherwise +
chgvar &bevoption ('OUTQ(*DEV)')

endselect

Limitations

* Maximum of 25 levels of DOxxx commands
* Maximum of 25 levels of SELECT commands

Subroutines

Subroutines

* Follow the main routine and precede ENDPGM

* Bounded by SUBR and ENDSUBR commands

* Invoked by CALLSUBR command

* RTNSUBR and ENDSUBR leave a subroutine

* RTNSUBR and ENDSUBR may return a signed integer value
* Labels are local

* Recursive subroutine calls are permitted

* GOTO is not allowed into or out of subroutines

* Stack size is 99 levels, and may be changed to 20 thru 9999 in the
SUBRSTACK parameter of the DCLPRCOPT command

¢ DMPCLPGM includes the subroutine stack

Subroutine with RTNVAL

dcl &subrstatus *int 4
dcl &RecCount *dec 10

callsubr Prepare Crtnval(&Subrstatus)
select

if (&Subrstatus *eq 2) do
sndpgmmsg msgid(usrl001) msgf(myusrmsgf) +
msgdta('Prepare routine requires file POST40.') +

msgtype (*escape)
subr Prepare /* Return code */
/* 0 = all oK */
/* 1 = completed with warnings */
/* 2 = not completed due to a fatal error */

chgvar &subrstatus 0

chkobj post40 *file aut(*objexi
monmsg cpf9801 exec

rtvmbrd file(post40) nbrcurrcd(&ecCount)
if (&RecCount *eq 0) chgvar &Subrstatus '1l'

. do something else

endsubr «tnval (&Subrstatus)>

A more realistic example

Use subroutines to divide a program into logically-related pieces.

callsubr PrcParms /* process parameters */
callsubr cCrtworkr /* create the work files */
callsubr updt /* update the database */
return

subr PrcParms
. . code to process the parameters
endsubr

subr Crtwrkfr
. . code to create work files
endsubr

subr Updt
. . . code to update the database
endsubr

sin(gerine)

cos(gerine)

Built-in Functions

] e
3

- |

ra y

Trim Functions

* %TRIM, %TRIML, %TRIMR

* First parameter is the character value to trim

* Second parameter is the group of characters to trim
* If no second parameter, these functions trim blanks

%TRIM example

dcl &File *char 10
dcl &Lib *char 10
dc1l &Sstmf *char 128

chgvar var(&stmf) +
value('/QSYS.LIB/' *cat
%trim(&Lib) *cat '.LIB/' “*cat +
%trim(&File) *cat '.FILE/' *cat +

%trim(&File) *cat '.MBR')

- - -+

&Stmf has a value like this:

/QSYS.LIB/QTEMP.LIB/TEMPOl.FILE/TEMPO1l.MBR

Case-conversion Functions

* %UPPER, %LOWER
* First parameter is the character value to convert

* Second parameter is the CCSID in which the data is stored. The
default is zero, which means the job’s CCSID.

Case-conversion example

Allow the user to enter a value in uppercase, lowercase, or mixed case.

dcl &Response *char 8

chgvar var(&Response) value(%upper(&Reponse))

if (&Response *eq RETRY) do

Scan Functions
* %SCAN find the position of one string within another one
* %CHECK search a string for a character that is not part of a set

* %CHECKR like %CHECK but search backwards from the end

* You may specify *LDA as the string to be searched/checked.

Example

Does the list of options contain the value *REPORT?

dcl &Options *char 82
dcl &CrtRpt *7g1

chgvar &CrtRpt (%scan('*REPORT ' &Options) *gt 0)

Type-conversion functions

* %CHAR
* %DEC
* %INT
* %UINT

Example

dcl &DeleteCt *dec 7

SndPgmMsg ('Deleted' *bcat %char(&DeleteCt) *bcat 'orders.')

Sample output:

Deleted 105 orders.

%CHAR discards leading zeros

Memory-allocation functions

* %SIZE returns the number of bytes occupied by a variable

* %LEN returns the number of digits (if numeric) or characters in a
variable

Example

dcl &Cmd *char 96
dcl &CmdLen *dec (15 5)
chgvar &Cmd . whatever

75Tz (8Cnd

(&Cmd &CmdLen)

chgvar &CmdLen

call gcmdexc

If the size of &Cmd changes,
no mod is required here.

Files and database

File support - Multiple Files

* Up to five declared files in one CL procedure

* OPNID parameter assigns an identifier to each open file

* One file may have an OPNID of *NONE

* CL variables are prefixed with the OPNID value and an underscore

* OPNID is used for all file-related commands:
DCLF, CLOSE, RCVF, SNDF, SNDRCVF, WAIT, ENDRCV

Example

dc1f QAFDMBRL(opnid(MbrList)

dspfd file(&srclib/&srcfile) ty?e(*mbr1ist) +
output(*outfile) outfile(qtemp/fdmbrl)

ovrdbf qgafdmbri tofile(qtemp/fdmbr1)
dowhile "1'
r‘cvf
monmsg cpt0864 exec(leave)
. do something with one or more &vBRLIST_ fields. . .

enddo

File Support — CLOSE

* Allows you to close a file so it can be re-read
* A RCVF against a closed file opens the file

File Support — RUNSQL

* Allows you to execute a single SQL statement in a CL procedure
* Work on those concatenation skills!

dc1l &Frombate *dec 7
dc1l &Thrubate *dec 7
dcl &Comma *char 1 value(',")
dcl &SQL *char 256

chgvar &sSQL ('declare global temporary table SltData +
(Frombate dec(7), Thrubate dec(7)) +
with replace')

runsql sql(&Sql) commit(*none)

chgvar &SQL ('insert into session.SltData +
values (' *cat %char(&Frombate) *cat +
&Comma *cat %char(&Frombate) *cat ')')
runsql sql(&Sql) commit(*none)

Miscellaneous enhancements

INCLUDE

* Tells the compiler to copy in source code

* Like /COPY and /INCLUDE in RPG

* SRCMBR is the source member to copy

* SRCFILE is the file containing the copy member

* SRCFILE(*INCFILE) refers to the INCFILE parameter in CRTBNDCL,
CRTCLPGM, CRTCLMOD

INCLUDE

pgm

include srcmbr(Errorbcl) srcfile(qclsrc)
. more code

include srcmbr(ErrorRtn) srcfile(qclsrc)

endpgm

Pass Parameters by Value

* Allowed on CALLPRC (specify *BYREF or *BYVAL)
 Useful for binding to C and Ml routines
* Also works for calling RPG routines!

RPG module
ctl-opt nomain;

dcl-s goption packed(3);

dcl-proc SetOption export;
dcl-pi *n;
inoption packed(3)
end-pi;

goption = inOption;
end-proc;

CL module

dcl &Option *dec 3

callprc prc(SetOption) parm((&Option

Increased maximumes

* Maximum number of parameters on PGM command increased from
40 to 255

* Maximum number of parameters on CALL and TFRCTL commands
increased to 255

* Maximum number of PARM commands in command source increased
from 75 to 99

* Maximum size of *CHAR variables increased from 9999 to 32,767

Final thoughts

Final thoughts

* CL is probably more or less what it will be when it comes to end of
life, so you may as well master what'’s there.

* We could already do what these many of these enhancements do by
calling HLL programs.

* Don’t try to replace RPG.

.‘-_._

ENDPGM

