SQL PL

in @ Nutshell

Ted Holt
Senior Software Developer, Profound Logic Software
Senior Technical Editor, The Four Hundred

fourhundredguru@gmail.com

We will answer these questions:

What is SQL PL?

What can | do with it?
What are the features?
How do | run it?

Should | quit writing RPG?

vk wnNRE

What is SQL PL?

* A programming language
* An interface to relational database management systems
* Based on SQL/Persistent Stored Modules (SQL/PSM), an ISO standard

* Supported on all members of the DB2 family
* DB2 for z/OS
* DB2 for Linux, Unix and Windows
* DB2 for |

* Well-suited for data-centric programming
* Easy
* Simple syntax
* Limited in scope
* Database statements are freely mixed with control statements

You can use SQLPLto...

* implement data-centric programming;

* define stored procedures (*PGM objects)
* define triggers

* define user-defined functions

* write SQL scripts (interpreted)

You cannot use SQL PLto. ..

* write to device files

What are the features of SQL PL?

The two types of statements

A SQL PL routine (stored procedure, trigger, function, script) is built of
statements.

* Simple statements
* Compound statements (“block”)

Simple statements

* SQL statements (CREATE TABLE, INSERT, etc.)

* Assignment (SET, VALUES . . . INTO)

* Conditional (IF, CASE)

* |teration (FOR, WHILE, REPEAT, LOOP)

* Transfer of control (RETURN, LEAVE, ITERATE, GOTO)
* CALL

Compound statements

* BEGIN {ATOMIC | NOT ATOMIC}
* declarations

* one or more statements
* END

Compound statements

* |t is most common to use a compound statement for the body.

* A compound statement may contain both simple and compound
statements.

* Terminate declarations and statements with semicolons.
* No semicolons after THEN and DO.

* An atomic statement is treated as a whole.
The statements in a non-atomic statement stand on their own.

Declarations

* Must be defined in this order:
* variables
* conditions
* cursors
* condition handlers

* Must be referenced only within the compound statement in which it
is declared. (That includes nested compound statements.)

Declarations — Variables

declare v_Item char(12);
declare v_Sep varchar (1) default ',';

* The DEFAULT keyword gives the initial value. Default is null.

* A variable may be referenced within the compound statement in
which it is declared and in nested compound statements.

* Use SET to modify a variable.
* Do not prefix colons to variable references, as RPG requires.

Declarations — Conditions

declare CreateFailed condition for sqlstate value '42710';
declare CreateFailed condition for sqlstate '42710';

declare CreateFailed condition for '42710';

* Gives a name to a SQL state.

* Allows you to make your code more descriptive

All three forms are
identical

Declarations — Cursors

create or replace procedure Allocate
(in p_Item char (6))

begin atomic

declare Sqlstate char (5);
declare v_Qty_Available dec (5);
declare v_oOrder dec (9);
declare v_Line dec (3);
declare v_Qty dec (6);

declare cl cursor for
select 0o.0rder, 0o.Line, 00.QtyOpen
from OopensalesOrders as oo
where oo.Item = p_Item
order by o0o.0Order, 0o.Line;

open cl;

repeat
fetch cl into v_order, v_Line, v_Qty;

if sqlstate < '02000' then

end if;

until sqlstate >= '02000'
or v_Qty_Available <= 0

end repeat;
close c1;

end

Declarations — Condition Handlers

declare condition-type handler for exception-ID(s)
statement;

* Three types — continue, exit, undo
* All three execute one statement
* An exception ID may be SQL state or a condition name

declare CreateFailed condition for sqlstate '42710';
declare continue handler for CreateFailed statement;

or declare continue handler for sqlstate ‘42710’ statement;

* Separate multiple exception ID’s with commas

Declarations — Condition Handlers

declare CreateFailed condition for sqlstate '42710';

declare continue handler for CreatefFailed
begin
. more code .
end;

create table plants
(ID dec(3), Location varchar(16),

primary key (ID));

* Continue handler — return to the statement following the one that

caused the exception

Declarations — Condition Handlers

declare exit handler for sqlexception
begin
set ErrorMsg = 'SQLSTATE=' concat sqlstate;
signal sqglstate '99001'
set message_text = ErrorMsg;
end;

* Exit handler — Leave the compound statement

* Undo handler — Roll back the changes and leave the compound
statement; only permitted in ATOMIC statements

Assignment statements

e SET
* May assign to two or more variables in one statement.
* May use a query to retrieve a value.

declare v_Option varchar(8);
declare v_Post char(6);
declare v_Counter integer default 0;

‘RETRY';

‘RETRY', v_Post
v_Counter + 1;
(select count(*) from Sales);

set v_Option
set v_Option
set v_Counter
set v_Counter

‘NOPOST';

Conditional statements — IF

*IF .. THEN .. END IF
*IF .. THEN .. ELSE .. END IF

eTF .. THEN .. ELSEIF .. THEN .. ELSE .. END IF
* No semicolons after THEN and ELSE
* One statement after THEN and ELSE
* Notice the space in END IF
Conditional statements — IF
create trigger ItemInsert

no cascade

before insert on items

referencing new row as n

for each row

mode db2row
if n.Stocking_UOM = 'KG' and n.weight <= 0 then

signal sqlstate '86100'

set Message_text = 'Weight must be positive or null';

end if

Conditional statements — CASE

* CASE value WHEN ... ELSE ... END CASE
* CASE WHEN ... ELSE ... END CASE

* If there is no ELSE and no case is true, CASE fails with SQLSTATE 20000.
* Ends with END CASE, not END

Conditional statements — CASE

case
when Stocking_UOM = 'KG' then
if n.weight <= 0 then
signal sqlstate '86100'
set Message_text = 'Weight must be positive or null';
end if;
when Stocking_UOM in ('cm', 'M') then
if n.length <= 0 then
signal sqglstate '86100'

set Message_text = 'Length must be positive or null';
end if;
else
signal sqlstate '86199'
set Message_text = 'Invalid unit of measure';

end case

lteration statements

* FOR iterates over a read-only result set

* LOOP must be broken from within the loop body
* WHILE top-tested loop

* REPEAT bottom-tested loop

lteration statements — FOR

FOR condition DO body END WHILE

create or replace Procedure Billing (in p_BillingCycle dec(3))
for One_Customer as

select c.AccountNumber

from customers as c
where c.BillingCycle = p_BillingCycle
do

call Bi11200R (One_Customer.AccountNumber);

end for

lteration statements — LOOP

Loopl:
Loop
fetch c_Bill 1into v_Company, v_oOrder, v_Line, v_Item, v_Qty;
if sglstate = '02000'
then leave Loopl;
end if;

. more code .

end Toop;

lteration statements — WHILE

while v_List <> " ' do

set v_Pos = Locate (v_Sep, v_List);

set v_Department = dec (substr (v_List, 1, v_Pos - 1));
insert into session.DeptList values(v_Department);

set v_List = substr (v_List, v_Pos + 1);

end while;

lteration statements — REPEAT

repeat
fetch cl into v_Order, v_Line, v_Qty;
if sglstate < "02000' then
. more code . . .
end 1if;

until Sqlstate >= '02000'
or v_Qty_Available <= 0

end repeat;

Labels

Main_routine: begin

%F.péption = 'X"' then
Teave Main_routine;
end if;
end Main_routine;
* Indicated by a trailing colon.

* You may label any executable statement, but the only practical places
for labels are loop structures and compound statements.

* You may include a label after END. That label must match the label for
the corresponding BEGIN.

Comments

* Double dash (--) — comment the remainder of the line

-- check the customer for credit hold

* Block comments (like CL) —/* ... */

/*
Post accounts payable to general ledger
2017-02-31 pexter Fillmore

*/

Handling exceptions

* If there is no applicable handler for an exception, the system sends
the exception to the caller.

* Exception handling is based on SQL state, not SQL code.

* Condition handlers for specific conditions take precedence over
condition handlers for general conditions.

* A condition handler executes only one statement, which may be a
compound statement.

Handling exceptions

To ignore an exception, write a continue handler that
does nothing.

begin
declare CreateFailed condition for sqlstate '42710';
declare continue handler for CreateFailed begin end;

create table plants, .
(1D dec(3), Location varchar(16), primary key (ID));

. more . . .

end

Handling exceptions

To take action for an exception and keep going,
write a continue handler.

begin

declare v_Status integer default 0;

declare CreateFailed condition for sqlstate '42710';

declare continue handler for CreateFailed
set v_Status = 1;

create table plants
(1D dec(3), Location varchar(16), primary key (ID));

Handling exceptions

To cancel after a fatal error, write an exit or undo
handler.
begin .
dec1are v_Status integer default 0;
declare CreateFailed condition for sqlstate '42710';

declare exit hand1er for CreateFa11ed

signal sqlstate '88001' .
set message_text = 'Plants table exists';

create table plants.]
(ID dec(3), Location varchar(16), primary key (ID));

Forcing a condition

To force a condition, use SIGNAL.

if v_Count > 20 then
signal sqlstate '88001'
set message_text = ‘Table size exceeded.';

end if;

* If a condition handler is defined, the condition handler
receives control.

* |If not, the condition is sent to the caller.

Forwarding a condition

To forward a condition to the caller, use RESIGNAL.

declare exit handler for CreateFailed
resignal;

* RESIGNAL is only permitted within a condition handler.

* You can use RESIGNAL to send the error that caused the handler to
take control, or you can send some other SQL state instead.

How do | run it? =

Object creation

Key source into a source physical file member or stream file.
Use RUNSQLSTM to execute the SQL code.

RUNSQLSTM SRCFILE(SCRIPTS) SRCMBR(LOADPLANTS) COMMIT (*NONE)

or

RUNSQLSTM SRCSTMF('LoadPlants.SQL') COMMIT(*NONE)

3. Do not assume that the script succeeded. Check the report!

Debugging Options

* System debugger in ACS
* IBM Data Studio
* Green-screen STRDBG

For information on the graphical debugging options, see the resources slide.

Green-screen debugging

Set the debug view option.

create or replace procedure templ
set option dbgview = *source

begin .
declare v_Option varchar(8);
declare V_Post char(6);

declare v_Counter 1integer default 0;

end

* Create the object.
* STRDBG
* Use EVAL %LOCALVARS to determine the variable names in the generated C code.

eval %localvars

Green-screen debugging

* To view a numeric variable:

Remember, C is case-sensitive!

eval SQLP_L2.V_COUNTER \

* To view a character variable:

eval *SQLP_L2.V_POST :s 6

Use * to dereference the pointer. Specify the length of the string.

Note: VARCHAR variables have two parts: xxx.LEN (length of the value) and
xxx.DAT (pointer to the value).

Does it replace RPG?

A Matter of Opinion

* Are you ready to embrace data-centric programming?

* How important is portability?

* Do you want to support another language in your shop?
* Do you want to make yourself more marketable?

Resources

* SQL Procedures, Triggers, and Functions on IBM DB2 for i

Bainbridge et al
http://www.redbooks.ibm.com/abstracts/sg248326.htmI?Open

* IBM Data Studio debugger and IBM DB2 for i

Kent Milligan
http://www.ibm.com/developerworks/ibmi/library/i-debugger-db2-i/

* DB2 SQL Procedural Language for Linux, Unix & Windows

Yip et al
out of print, but available on the web
PDF at http://confonet.nic.in/tsp/db2_sql_book.pdf

Resources

* Toadworld.com DB2 wiki
http://www.toadworld.com/platforms/ibmdb2/w/wiki
* SQL-PL Guide
http://www.sqlpl-guide.com/

