
© 2016 IBM Corporation

Db2 for i Advanced
OLAP Functions

Jim Denton
jldenton@us.ibm.com
IBM Lab Services

OMNI June 2018

© 2018 IBM Corporation

Db2 for i ibm.com/systems/power/software/i/db2

O
M

N
I 2

01
8

1

© 2018 IBM Corporation

Db2 for i ibm.com/systems/power/software/i/db2

• Getting Started -> Whitepapers

© 2018 IBM Corporation

Db2 for i ibm.biz/DB2iWiki

O
M

N
I 2

01
8

2

© 2018 IBM Corporation

New Wiki for Db2 Enhancements via PTF

• Regularly check (or subscribe to) the Db2 for i Updates Wiki!

– Contains details on new PTFs that deliver new Db2
capabilities

– Wiki : https://www.ibm.com/developerworks/ibmi/techupdates/db2

© 2018 IBM Corporation

What are you doing today for analytics?

 Choosing the platform
– Hardware / Software / Data Model / Skills

 Managing ETL

 Choosing the reporting tools
– Legacy tools like Query/400
– Vendor provided reports
– HLL reports
– Spreadsheets
– Modern tools (Web Query, COGNOS, etc.)

 Isolating the data model from the users
– Views
– Metadata

O
M

N
I 2

01
8

3

© 2018 IBM Corporation

Turning Data into Insight

DATA
Analytics

OLAP is Online Analytical Processing

© 2018 IBM Corporation

What are OLAP Specifications?

 On-line Analytical Processing functions providing the ability
to return ranking, row numbering, aggregates and more as
part of a SQL query result

– Also referred to as window functions

 Can be specified as part of the select-list or ORDER BY
clause

 The following is a list of the OLAP function categories:
– Ordered OLAP specifications
– Numbering specifications
– Aggregation specifications
– Super groups

O
M

N
I 2

01
8

4

© 2018 IBM Corporation

OLAP Function Syntax Overview

 All of the OLAP functions allow the window partition
clause and the window order clause

– The window order clause is sometimes required while the window partition
clause is always optional

 OVER specifies the definition of the window over the result set

 The window-partition-clause defines the boundaries
between the partitions within the window

 window-order-clause defines the sort order of the rows within
a partition

– This does not define the ordering of the result set

OLAP Function()

© 2018 IBM Corporation

OLAP Function Window Order Clause

 ORDER BY clause defines the ordering used to calculate the rank
or compute the row number
 sort-key-expression contains the ordering criteria
 NULLS FIRST or LAST determines whether null values appear

before or after all non-null values
– Nulls come last by default

 Optional ORDER OF specifies the table designator of the sub-
select (or full-select) containing an ORDER BY clause

O
M

N
I 2

01
8

5

© 2018 IBM Corporation

Ordered OLAP Specifications

 The ordered OLAP specifications are as follows:
– RANK Ordinal rank within the window
– DENSE_RANK Ordinal rank within the window
– LAG Reference to a preceding row in the window
– LEAD Reference to a following row in the window
– NTILE Quantile rank of a row within the window
– CUME_DIST Cumulative percentile ranking within the window

including the current result set row

 These require the window order clause since the results
depend on some kind of ordering

© 2018 IBM Corporation

RANK and DENSE_RANK Example

 RANK and DENSE_RANK report values based on the window order
clause independent of the result set sorting

SELECT empno, lastname, salary+bonus AS TOTAL_SALARY,
RANK() OVER (ORDER BY salary+bonus DESC) AS Salary_Rank
FROM employee
WHERE salary + bonus > 30000
ORDER BY lastname

Dense_Rank()
Output

O
M

N
I 2

01
8

6

© 2018 IBM Corporation

RANK and DENSE_RANK Example

© 2018 IBM Corporation

PARTITION BY Example

 Rank top entries by department
SELECT workdept, empno, lastname, salary+bonus AS TOTAL_SALARY,
RANK() OVER (PARTITION BY workdept

ORDER BY salary+bonus DESC) AS Salary_Rank
FROM employee
WHERE salary + bonus > 30000
ORDER BY workdept, lastname

Ranking is
restarted for
each
department
(partition)

O
M

N
I 2

01
8

7

© 2018 IBM Corporation

LAG and LEAD Example
Compare the sales of stores within the same region
including comparisons to the stores that were adjacent in
terms of better and worse sales
SELECT store, region, sales,

sales - LAG(sales,1) OVER(PARTITION BY region ORDER BY sales)
AS prior_diff,

LEAD(sales,1) OVER(PARTITION BY region ORDER BY sales) - sales
AS next_diff

FROM stores ORDER BY region, sales

STORE REGION SALES PRIOR_DIFF NEXT_DIFF

Bobs NW 100,000.00 - 340,000.00

Toms NW 440,000.00 340,000.00 60,000.00

Mills NW 500,000.00 60,000.00 -

Targe SW 140,000.00 - 260,000.00

Menes SW 400,000.00 260,000.00 370,000.00

Caining SW 770,000.00 370,000.00 -

© 2018 IBM Corporation

LAG / LEAD Syntax

 LAG and LEAD specifications have additional options
to allow greater flexibility:

– The offset is the offset to the lagging/leading row in the window
of the result set. It must be a positive integer and defaults to 1.

– Default value is what to use if the expression is null.

– Respect and ignore nulls apply to the expression. If it is null, it
is not included in the results.

O
M

N
I 2

01
8

8

© 2018 IBM Corporation

NTILE Example

Calculate the quartile ranking in terms of highest sales for all
stores:

SELECT store, region, sales,
NTILE(4) OVER(ORDER BY sales DESC)

quartile_rank,
FROM stores ORDER BY sales DESC

STORE REGION SALES QUARTILE_RANK

Caining SW 770,000.00 1

Mills NW 500,000.00 1

Toms NW 440,000.00 1

Menes SW 400,000.00 2

… …. …. …

Bobs NW 100,000.00 4

© 2018 IBM Corporation

CUME_DIST Example

WITH t AS
(SELECT store, region, sales,

CUME_DIST() OVER(ORDER BY sales DESC)
cume_dist FROM stores)

SELECT * FROM t WHERE cume_dist <= .30
ORDER BY sales DESC

Select the stores that are in the top 30 percent in terms
of sales:

STORE REGION SALES CUME_DIST

Caining SW 770,000.00 0.09

Mills NW 500,000.00 0.18

Toms NW 440,000.00 0.27

O
M

N
I 2

01
8

9

© 2018 IBM Corporation

Numbering Specifications

 ROW_NUMBER is the only supported numbering
specification.

 The window partition clause is optional.

 The window order clause is optional but defaults to an
arbitrary value based on implementation and not to the
ORDER BY for the statement's result set.

© 2018 IBM Corporation

ROW_NUMBER Example

 ROW_NUMBER can be used to assign a number to query result rows

SELECT ROW_NUMBER() OVER

(ORDER BY workdept, lastname) AS Nbr,

lastname, salary

FROM employee

ORDER BY workdept, lastname

SELECT workdept, lastname, hiredate,

ROW_NUMBER() OVER (PARTITION BY workdept

ORDER BY hiredate) AS Nbr

FROM employee

ORDER BY workdept, hiredate

O
M

N
I 2

01
8

10

© 2018 IBM Corporation

Stateful versus Stateless Pagination

 Consuming large result sets in one transaction can result in
long response times and unhappy end users

 The concept of pagination or page-at-a-time has been
widely used in legacy applications

– Developers took advantage of stateful, persistent connections
– Database managed cursor positioning

 Browser based applications tend to be stateless
– The database connection is not persistent
– Cursor positioning must be handled within the client application

© 2018 IBM Corporation

Example of Stateful Pagination

 Stateful pseudo code
Connect, Open

Fetch First 5 rows
Fetch Next 5 rows
Fetch next 5 rows

Close, Disconnect
 The connection to the

database is persistent
during the life of the cursor
 Subsequent fetches start at

the next sequential row
 Duplicate data spans pages
 Coding is simple

Result set
row ordinal
position

Ordering
Data

Unique key
(Encrypted)

1 Abcd 1234

2 Abdc 3214

3 Acbd 4131

4 Acdb 2143

5 Bacd 1243

6 Bacd 2341

7 Bcad 4213

8 Bcda 3142

9 Bdac 1423

10 Bdca 2431

11 Bdca 3412

12 Cadb 1324

13 Cbad 4321

O
M

N
I 2

01
8

11

© 2018 IBM Corporation

Example of Stateless Pagination

 Stateless pseudo code
Connect, Open, Fetch first 5 rows,
Close, Disconnect
Connect, Open, Fetch first 10 rows,
Close, Disconnect
Connect, Open, Fetch first 15 rows,
Close, Disconnect

 Cursor position is lost after close
and disconnect

 Positioning data must be preserved
across connections

– Ordering data and/or unique key
may not be suitable for positioning

 Application positioning results in
slow response times

– Previously fetched rows may be
retrieved multiple times

– Copies of result sets are sometimes
made

 What if the ordinal position number
was part of the result set?

Result set
row ordinal
position

Ordering
Data

Unique key
(Encrypted)

1 Abcd 1234

2 Abdc 3214

3 Acbd 4131

4 Acdb 2143

5 Bacd 1243

6 Bacd 2341

7 Bcad 4213

8 Bcda 3142

9 Bdac 1423

10 Bdca 2431

11 Bdca 3412

12 Cadb 1324

13 Cbad 4321

© 2018 IBM Corporation

ROW_NUMBER To The Rescue!

 Row Number pseudo code
Connect,
Open(row_number>=1),
Fetch 5 rows, Close,
Disconnect

Connect,
Open(row_number>=6,
Fetch 5 rows, Close,
Disconnect

Connect,
Open(row_number>=11,
Fetch 5 rows, Close,
Disconnect

Result set
Row Number

Ordering
Data

Unique key
(Encrypted)

1 Abcd 1234

2 Abdc 3214

3 Acbd 4131

4 Acdb 2143

5 Bacd 1243

6 Bacd 2341

7 Bcad 4213

8 Bcda 3142

9 Bdac 1423

10 Bdca 2431

11 Bdca 3412

12 Cadb 1324

13 Cbad 4321

O
M

N
I 2

01
8

12

© 2018 IBM Corporation

Pagination Using ROW_NUMBER

WITH rownum_cte AS
(SELECT empno,

ROW_NUMBER() OVER
(ORDER BY lastname, firstnme)

AS rownbr
FROM employee)

SELECT rownbr, AE.* FROM
employee AE INNER JOIN

rownum_cte C
ON AE.empno=C.empno

WHERE rownbr >= ?
ORDER BY rownbr

 Key steps:
1. CTE must be used to compute the row number - OLAP specification not

allowed on WHERE clause
2. Computed row number used on WHERE clause to starting row for a page
3. ORDER BY guarantees the data will be ordered based on the

ROW_NUMBER window order

1

2

3

Rownbr >= 1

Rownbr >= 6

Rownbr >= 11

© 2018 IBM Corporation

OFFSET and LIMIT for Stateless Pagination

Connect,
SELECT…OFFSET 0 LIMIT 5
Fetch 5 rows, Close, Disconnect

Connect,
SELECT…OFFSET 5 LIMIT 5
Fetch 5 rows, Close, Disconnect

Connect,
SELECT…OFFSET 10 LIMIT 5
Fetch 5 rows, Close, Disconnect

Result set
Row
Number

Ordering
Data

Unique key
(Encrypted)

1 Abcd 1234

2 Abdc 3214

3 Acbd 4131

4 Acdb 2143

5 Bacd 1243

6 Bacd 2341

7 Bcad 4213

8 Bcda 3142

9 Bdac 1423

10 Bdca 2431

11 Bdca 3412

12 Cadb 1324

13 Cbad 4321

O
M

N
I 2

01
8

13

© 2018 IBM Corporation

Aggregation Specifications

 Aggregation specifications are very powerful which also
means the syntax can be complicated.

 The big differences from ordering and numbering
specifications are in the RANGE and ROW clauses

© 2018 IBM Corporation

Aggregate Functions

– AVG
– CORRELATION
– COUNT
– COUNT_BIG
– COVARIANCE
– COVARIANCE_SAM

P
– MAX
– MEDIUM
– MIN
– PERCENTILE_CONT
– PERCENTILE_DISC
– SUM

– Regression Functions
• REGR_AVGX
• REGR_AVGY
• REGR_COUNT
• REGR_INTERCEPT
• REGR_R2
• REGR_SLOPE
• REGR_SXX
• REGR_SXY
• REGR_SYY

– STDDEV
– STDDEV_SAMP
– VARIANCE
– VARIANCE_SAMP

O
M

N
I 2

01
8

14

© 2018 IBM Corporation

SUM Aggregate Functions

SELECT store, region, sales,
SUM(sales) OVER(PARTITION BY region) region_total,
DECIMAL(100*sales / SUM (sales)

OVER(PARTITION BY region), 5,2) percentage
FROM stores ORDER BY region, percentage

Return the detail store information and the total sales
by region plus the percentage the store contributed to
the total for the region:

STORE REGION SALES REGION_TOTAL PERCENTAGE

Wally NE 150,000.00 450,000.00 33.33

Pensk NE 300,000.00 450,000.00 66.66

Bobs NW 100,000.00 1,040,000.00 9.61

Toms NW 440,000.00 1,040,000.00 42.30

Mills NW 500,000.00 1,040,000.00 48.07

© 2018 IBM Corporation

SUM Aggregate Example – Rolling Sum

Return the detail store information and the rolling sum
of the store sales:

SELECT store, region, sales,
SUM(sales)

OVER(ORDER BY sales DESC) rolling_sum
FROM stores ORDER BY rolling_sum

STORE REGION SALES ROLLING_SUM

Caining SW 770,000.00 770,000.00

Mills NW 500,000.00 1,270,000.00

Toms NW 440,000.00 1,710,000.00

Menes SW 400,000.00 2,110,000.00

BBB SE 350,000.00 2,460,000.00

O
M

N
I 2

01
8

15

© 2018 IBM Corporation

Correlation, Covariance and Covariance_Samp

Use correlation and covariance to analyze the relationship
between salary and bonus for each department:

SELECT workdept,
CORRELATION(salary, bonus) correlation,
COVARIANCE(salary, bonus) covariance,
COVARIANCE_SAMP(salary, bonus) covariance_samp

FROM employee GROUP BY workdept ORDER BY workdept

WORKDEPT CORRELATION COVARIANCE COVARIANCE_SAMP

A00 0.976023 1,743,000 2,178,750

B01 - 0 -

C01 0.999835 574,437 765,916

D11 0.775424 240,454 264,500

… …. …. …

E21 0.910221 68,944 82,733

© 2018 IBM Corporation

Correlation, Covariance and Covariance_Samp

Use the correlation and covariance aggregate functions in
an OLAP expression to further analyze for department
‘A00’ the relationship between salary and bonus:

SELECT empno,
CORRELATION(salary, bonus) OVER(PARTITION BY workdept

ORDER BY empno) correlation,
COVARIANCE(salary, bonus) OVER(PARTITION BY workdept

ORDER BY empno) covariance
FROM employee WHERE workdept = ‘A00’ ORDER BY empno

EMPNO CORRELATION COVARIANCE

000010 - 0

000110 1.000000 156,250

000120 0.999853 1,688,888

200010 0.962723 1,381,250

200120 0.976023 1,743,000

O
M

N
I 2

01
8

16

© 2018 IBM Corporation

Business questions:

• Is there a correlation
between the amount spent
on marketing and sales for a
product?

• Is the correlation weak or
strong?

• Can we predict sales based
on the amount spent on
marketing?

Regression Aggregate Functions

© 2018 IBM Corporation

Business results:
• SELECT REGR_SLOPE (sales, mktg), REGR_INTERCEPT (sales, mktg)

FROM salesdata
• SELECT POWER (CORRELATION (sales, mktg), 2)

FROM salesdata

Predict sales based
on marketing

budget

Predict with
confidence as R2

approaches 1

Regression Aggregate Functions O
M

N
I 2

01
8

17

© 2018 IBM Corporation

OLAP Aggregation Specifications

© 2018 IBM Corporation

FIRST, LAST, and NTH Value

SELECT store, sales,
sales - FIRST_VALUE(sales) OVER (ORDER BY sales DESC

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
behind_1st,

sales - NTH_VALUE(sales,2) OVER (ORDER BY sales DESC
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)

behind_2nd,
sales - LAST_VALUE(sales) OVER (ORDER BY sales DESC

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
compared_to_last

FROM stores ORDER BY sales DESC

Compare the sales of the current store to the store with the
best sales, second best sales, and the worst sales results:

STORE SALES BEHIND_1ST BEHIND_2ND COMPARED_TO_LAST

Caining 770,000.00 0.00 270,000.00 670,000.00

Mills 500,000.00 -270,000.00 0.00 400,000.00

.. … … … …

Bobs 100,000.00 -670,000.00 -400,000.00 0.00

O
M

N
I 2

01
8

18

© 2018 IBM Corporation

RATIO_TO_REPORT Example

Calculate the quartile ranking for all stores and show their
overall sales percentage:

SELECT store, region, sales,
DECIMAL(RATIO_TO_REPORT(sales) OVER() *100, 10, 2) percent

FROM stores ORDER BY sales DESC

STORE REGION SALES PERCENT

Caining SW 770,000.00 21.10

Mills NW 500,000.00 13.70

Toms NW 440,000.00 12.05

Menes SW 400,000.00 10.96

… …. …. …

Bobs NW 100,000.00 2.74

© 2018 IBM Corporation

Grouping Sets and Super Groups

 Many BI applications and OLAP tools involve hierarchical,
multi-dimensional aggregate views of transaction data

– Users need to view results at multiple levels
– Users need to view result data from different perspective
– Current grouping support only allows aggregation data of along a

SINGLE dimension

EXAMPLE: SELECT country region, store, product, SUM(sales)
FROM trans
GROUP BY country, region, store, product

– Limitations result in extra coding for programmers

 6.1 grouping and OLAP capabilities allow data to be grouped in
multiple ways with a single SQL request

– ROLLUP
– CUBE
– GROUPING SETS

Less Coding
for Developers!

O
M

N
I 2

01
8

19

© 2018 IBM Corporation

ROLLUP

 An extension to the GROUP BY clause that produces a
result set containing sub-total rows in addition to the
″regular″ grouped rows

 Sub-total rows are ″super-aggregate″ rows that contain
further aggregates whose values are derived by applying
the same column functions that were used to obtain the
grouped rows

 ROLLUP on the GROUP BY clause results in DB2
returning aggregates for each level of the hierarchy
implicitly represented in the grouping columns

© 2018 IBM Corporation

ROLLUP

 ROLLUP(Country, Region) will result in the data being
summarized at the following levels

– (Country, Region)
– (Country)
– () << represents Grand Total

 Example Query:
SELECT country, region, SUM(sales)

FROM trans

GROUP BY ROLLUP (country, region)

O
M

N
I 2

01
8

20

© 2018 IBM Corporation

ROLLUP Output Example

Country Region Sum(Sales)

Canada - 100,000

Canada NW 100,000

USA - 3,250,000

USA NE 450,000

USA NW 940,000

USA SE 550,000

USA SW 1,310,000

- - 3,350,000

SELECT country, region, SUM(sales) FROM trans
GROUP BY ROLLUP (country, region)

GROUP BY
country,NULL

GROUP BY
NULL, NULL

© 2018 IBM Corporation

ROLLUP Output Example

Country Region Sum(Sales)

Canada NW 100,000

Canada - 100,000

USA NE 450,000

USA NW 940,000

USA SE 550,000

USA SW 1,310,000

USA - 3,250,000

- - 3,350,000

SELECT country, region, SUM(sales) FROM trans
GROUP BY ROLLUP (country, region)
ORDER BY country, region

GROUP BY
country,NULL

GROUP BY
NULL, NULL

O
M

N
I 2

01
8

21

© 2018 IBM Corporation

ROLLUP Output Example

Country Region Sum(Sales)

Canada NW 100,000

Canada TOTAL 100,000

USA NE 450,000

USA NW 940,000

USA SE 550,000

USA SW 1,310,000

USA TOTAL 3,250,000

GRAND TOTAL 3,350,000

SELECT IFNULL(country,’GRAND’),
IFNULL(region,’TOTAL’),
SUM(sales) FROM trans

GROUP BY ROLLUP (country, region)
ORDER BY country, region

You can also use
COALESCE and CASE

for formatting

© 2018 IBM Corporation

CUBE

 An extension to the GROUP BY clause that produces a
result set that contains all the rows of a ROLLUP
aggregation, plus contains ″cross-tabulation″ rows

 Cross-tabulation rows are additional ″super-aggregate″
rows that are not part of an aggregation with sub-totals

 CUBE on the GROUP BY clause results in DB2 returning
aggregates for all possible distinct combinations
represented by the grouping columns

O
M

N
I 2

01
8

22

© 2018 IBM Corporation

CUBE

 CUBE(Country, Region) will result in the data being
summarized at the following levels

– (Country, Region)
– (Country)
– (Region)
– () << represents Grand Total

Returns results at multiple intersection points

 Example Query:
SELECT country, region, SUM(sales)
FROM trans
GROUP BY CUBE(country, region)

© 2018 IBM Corporation

CUBE Output Example

Country Region Sum(Sales)

- NE 450000

- NW 1040000

- SE 550000

- SW 1310000

- - 3350000

Canada - 100000

USA - 3250000

Canada NW 100000

USA NE 450000

USA NW 940000

USA SE 550000

USA SW 1310000

SELECT country,region, SUM(sales) FROM trans
GROUP BY CUBE (country, region)

GROUP BY NULL, NULL

GROUP BY NULL, region

GROUP BY country, NULL

O
M

N
I 2

01
8

23

© 2018 IBM Corporation

CUBE Output Example

Country Region Sum(Sales)

Canada NW 100000

Canada - 100000

USA NE 450000

USA NW 940000

USA SE 550000

USA SW 1310000

USA - 3250000

- NE 450000

- NW 1040000

- SE 550000

- SW 1310000

- - 3350000

SELECT country,region, SUM(sales) FROM trans
GROUP BY CUBE (country, region)
ORDER BY country,region

GROUP BY NULL, NULL

GROUP BY NULL, region

GROUP BY country, NULL

© 2018 IBM Corporation

GROUPING SETS

 Allows multiple grouping clauses to be specified in a single
statement

 This can be thought of as the union of two or more groups
of rows into a single result set

 GROUPING SET on the GROUP BY clause enables DB2
to return aggregates for multiple sets of grouping columns

O
M

N
I 2

01
8

24

© 2018 IBM Corporation

GROUPING SETS

 GROUPING SETS((Country, Region), (Country, Store)) will
result in the data being summarized at the following levels

– (Country, Region)
– (Country, Store)

 CUBE and ROLLUP can be used in combination with
Grouping Sets

CAUTION: These types of combinations can result in an
exponential growth in the number of grouping sets returned by a
query, combine carefully

 Example Query:
SELECT country, region, SUM(sales)
FROM trans
GROUP BY

GROUPING SETS((country, region), (country, store))

© 2018 IBM Corporation

GROUPING SETS Output Example

Country Region Store Sum(Sales)

Canada NW - 100,000

USA NE - 450,000

USA NW - 940,000

USA SE - 550,000

USA SW - 1,310,000

Canada - Dougs 100,000

USA - Mariahs 350,000

USA - KMs 770,000

USA - Jennas 400,000

USA - Adrians 500,000

USA - Joshs 300,000

USA - TZs 200,000

USA - Maddies 210,000

GROUP BY
COUNTRY, STORE

SELECT country, region, store, SUM(sales)
FROM trans
GROUP BY
GROUPING SETS
((country, region), (country, store))

GROUP BY
COUNTRY, REGION

O
M

N
I 2

01
8

25

© 2018 IBM Corporation

GROUPING

 The GROUPING function can be used to determine if null
values are from underlying user data or DB2 aggregate
processing

– Function returns 1 if grouping column contains NULL value produced
by grouping set or super group processing

– Function returns 0 if grouping column contains “real” GROUP BY
value

EXAMPLE: SELECT country,region, store, GROUPING(store), SUM(sales)
FROM trans
WHERE transYear = 2006
GROUP BY

GROUPING SETS ((country, region),(country, store))

© 2018 IBM Corporation

Grouping Sets & Super Groups: View Considerations

CREATE VIEW v1 AS
SELECT country, region, SUM(sales) FROM trans
WHERE country = 'USA'

GROUP BY ROLLUP (country, region)

SELECT * FROM v1

Country Region Sum(Sales)

USA NE 450,000

USA NW 940,000

USA SE 550,000

USA SW 1,310,000

USA - 3,250,000

- - 3,250,000

CREATE VIEW v2 AS
SELECT country, region, SUM(sales) FROM trans
GROUP BY ROLLUP (country, region)

SELECT * FROM v2 WHERE country='USA'

 Grouping Set & Super Groups produce additional rows not in
underlying table. WHERE clause can cause different results
 Filtering part of View virtual table definition OR…
 Filtering applied to retrieval of rows from View virtual table

O
M

N
I 2

01
8

26

© 2018 IBM Corporation

Where does
Db2 Web Query for i

fit in?

© 2018 IBM Corporation

Salary Analysis

 Your HR department wants to ensure salaries are
equitable across the company and across departments
and there aren’t outliers or other discrepancies

– What is the employee’s salary compared to the average
WITHIN their department?

– What is an employee’s ratio of salary within their department
and overall company?

– For each employee, compare their salary to the two closest
behind this person’s salary, and the two closest ahead of them
in salary

O
M

N
I 2

01
8

27

© 2018 IBM Corporation

The Process – Create SQL Views

View for Salary compared to AVERAGE

© 2018 IBM Corporation

The Process – Create SQL Views …

View for 2 ahead and 2 behind

O
M

N
I 2

01
8

28

© 2018 IBM Corporation

The Process – Create Synonyms

Within Db2 Web Query, create a “synonym” (term for meta
data) over each of the SQL Views

These are fields
returned from the
view

© 2018 IBM Corporation

The Process – Build Reports

 Build Your Reports/Charts/Dashboards with Db2 Web
Query InfoAssist

– Add additional filters or virtual fields
– Format header/footer/stylesheet
– Choose output

• Excel, HTML, mobile
– Add to dashboard
– Embed in your app
– Feed into your data warehouse

These are fields
returned from the
view and available
in your report

O
M

N
I 2

01
8

29

© 2018 IBM Corporation

Examples

© 2018 IBM Corporation

Examples O
M

N
I 2

01
8

30

© 2018 IBM Corporation

Db2 Web Query Version 2.2.1

 Steps beyond traditional Business Intelligence into Data Discovery

– New data driven Visualization empowers:
 Users, Analysts, and Data scientists

– Data layers (e.g., demographics) for geographic maps
What is the average income in this zip code?

 Consolidate, Prepare, and Transform Data with DataMigrator ETL

– Even augment existing data with data from Watson

 Install or upgrade in 15 minutes with the “EZ-Install” Package
 Includes 100’s of sample reports, for the business and I/T

Learn more at
ibm.biz/db2webqueryi
and
db2webqueryi.blogspot.com

© 2018 IBM Corporation

Turning Data into Insight

DATA
Analytics

OLAP is Online Analytical Processing

Rich function available directly on DB2 for i
• No need to move the data elsewhere!

O
M

N
I 2

01
8

31

© 2018 IBM Corporation

Thank you!

O
M

N
I 2

01
8

32

