PowerSystems@

Db2 for i Advanced
OLAP Functions

Jim Denton
jldenton@us.ibm.com
IBM Lab Services

OMNI June 2018

© 2016 IBM Corporation

2
Power System SO

Db2 for i ibm.com/systems/power/software/i/db2

IT infrastructure > Power Systems > Software > IBMi

Overview Benefits Getting started Products Resources

DB2 for i {formerly known as DB2 for i15/05) is an advanced, 64-bit Relational Database Management
System (ROBMS) that leverages the high performance, virtualization, and energy efficiency features of
IBM's Power Systems. A member of IBM's leading edge family of DB2 products, DB2 for i supports a broad
range of applications and development environments at a low cost of ownership due to its unigue autonomic
computing (self-managing) features.

B Download a summary of the DB2 for i 7.3 enhancements

© 2018 IBM Corporation

OMNI 2018

@

Power Systems

Db2 for i ibm.com/systems/power/software/i/db2
» Getting Started -> Whitepapers

o Connectivity
o Accessing DB2 for i from Linux
o Heterogeneous Data Access from IBM i
« Data Warehousing and Analytics
o DB2 for i Star Schema Join Support
« DB2 and XML
o Replacing DB2 Extenders with DB2 Built in Support for XML
s Modernization
o DDS and SQL: A Winning Combination for Modernization
« Performance and Scalability
o Creating and Using Materialized Query Tables
o Indexing and Statistics Strategies
o Parallelism with DB2 Symmetric Multi-Processing
o Table Partitioning Strategies
* Query Modernization
o Moving from OPNQRYF to SQL
o Query/400 Modernization Services
e SQL
o Accessing Web Services using SQL

© 2018 IBM Corporation

@

Power Systems

Db2 for i ibm.biz/DB2iWiki
Welcome to DB2 for i

[Z] | Updated July 12, 2016 by drmack | Tags: None

Page Actions ~

Welcome to the home page for the DB2 for i Wiki. Here you will find a
variety of information from the leading experts for DB2 for i within IBM.

* Articles (Recent)

« Blog: DB2 fori

* Database Modernization

+ Data Warehouse and Business Intelligence for IBM i
« DB2 fori Home Page

« DB2 for i (community) Forum

« Redbooks

+ Technology refreshes

« Training and Consulting Services

« Whitepapers

© 2018 IBM Corporation

OMNI 2018

)
Power Systems b

New Wiki for Db2 Enhancements via PTF

* Regularly check (or subscribe to) the Db2 for i Updates Wiki!
— Contains details on new PTFs that deliver new Db2
capabilities
— WIiki : https://www.ibm.com/developerworks/ibmi/techupdates/db2

Database Enhancement Landing Pages

IBMi7.3 |TR1-Base Enhancements

DB2 for i updates by PTF Group and year

IBMi7.2 |TR5-TR4-TR3-TR] DB2 fori PTF GI'OUFIS -2017

DB2 for i PTF Groups - 2016

DB2 for i PTF Groups - 2015

IBMi7.1 |TR11-TR10 -TR9-]
DB2 for i PTF Groups - 2014

DB2 for i PTF Groups - 2013

© 2018 IBM Corporation

What are you doing today for analytics?

= Choosing the platform
Hardware / Software / Data Model / Skills

= Managing ETL

= Choosing the reporting tools
Legacy tools like Query/400
Vendor provided reports
HLL reports
Spreadsheets
Modern tools (Web Query, COGNOS, etc.)

= [solating the data model from the users
Views
Metadata

© 2018 IBM Corporation

OMNI 2018

Turning Data into Insight

N
ST B
DATA Analytics >
R

OLAP is Online Analytical Processing

© 2018 IBM Corporation

What are OLAP Specifications?

= On-line Analytical Processing functions providing the ability
to return ranking, row numbering, aggregates and more as
part of a SQL query result

Also referred to as window functions

= Can be specified as part of the select-list or ORDER BY
clause

= The following is a list of the OLAP function categories:
Ordered OLAP specifications
Numbering specifications
Aggregation specifications
Super groups

© 2018 IBM Corporation

OMNI 2018

OLAP Function Syntax Overview

— OLAP Function() —0VER—

(
Lwindow-partition-clauseJ Lwindow-order-clauseJ

= All of the OLAP functions allow the window partition

clause and the window order clause

The window order clause is sometimes required while the window partition
clause is always optional

= OVER specifies the definition of the window over the result set

= The window-partition-clause defines the boundaries
between the partitions within the window

= window-order-clause defines the sort order of the rows within
a partition
This does not define the ordering of the result set

© 2018 IBM Corporation

)_

OLAP Function Window Order Clause

’ rASC—l |—NULLS LAST—l

[ASC:I
NULLS FIRST——

ULLS FIRST
—DESC |—N —l

—DESC NULLS LAST
—0RDER OF—table-designator

—ORDER BY—"——sort-key-expression

= ORDER BY clause defines the ordering used to calculate the rank
or compute the row number

= sort-key-expression contains the ordering criteria

= NULLS FIRST or LAST determines whether null values appear

before or after all non-null values
Nulls come last by default

= Optional ORDER OF specifies the table designator of the sub-
select (or full-select) containing an ORDER BY clause

© 2018 IBM Corporation

OMNI 2018

Ordered OLAP Specifications

lag-function OVER—(

lead-function———— l—window—partition—clauseJ

RANK—(—)
ENSE RANK—(—)
TILE—(—expression—)—
UME DIST—(—)

= The ordered OLAP specifications are as follows:

RANK Ordinal rank within the window
DENSE_RANK Ordinal rank within the window

LAG Reference to a preceding row in the window
LEAD Reference to a following row in the window
NTILE Quantile rank of a row within the window

CUME_DIST Cumulative percentile ranking within the window
including the current result set row

= These require the window order clause since the results
depend on some kind of ordering

© 2018 IBM Corporation

window-order-clause—)—

RANK and DENSE_RANK Example

= RANK and DENSE_RANK report values based on the window order
clause independent of the result set sorting

SELECT empno, lastname, salary+bonus AS TOTAL_SALARY,
RANK() OVER (ORDER BY salary+bonus DESC) AS Salary_Rank
FROM employee

WHERE salary + bonus > 30000 Dense_Rank()
ORDER BY lastname Output
_iolx

EMPMNO | LASTRHAME TOTAL_SALARY | SALARY RANK SALARY_RANK
000050 (GEYER 40975.00 5 5
000010 |HAAS 5376000 1 1
200010 |HEMMINGER 4750000 2 i 2
000090 |HEMDERSON 30350.00 11 (10
200220 |JOHN 3044000 g 3
000030 [KAR 39050.00 B ' 6
000110 |LUGCCHESS 47400.00 3 3
000220 |LUTZ 3044000 g - 9
000070 |PULASK] 3687000 7 - 3
000060 |STERM 3275000 g :
000020 |\ THOMPSGQR 42050.00 4 - :

© 2018 IBM Corporation

OMNI 2018

RANK and DENSE_RANK Example

SELECT empno, lastname, salary, bonus,
DENSE_RANK() OVER (ORDER BY salary+bonus DESC) AS Comp_Rank |

DENSE_RANK() OVER (ORDER BY salary DESC) AS Salary_Rank ,
DENSE_RANK() OVER (ORDER BY bonus DESC) AS Bonus_Rank

FROM employee
WHERE salary + bonus > 30000;

000010
200010
000110
000020
000050
000030
000070
000060
000220
200220
000090

HAAS

EMPNOG LASTNAME SALARY

52750.00

HEMMINGER 46500.00
LUCCHESSI 46500.00
THOMPSON 41250.00

GEYER
KWAN
PULASK]
STERN
LUTZ
JOHN

40175.00
36250.00
36170.00
32250.00
20840.00
29840.00

HEMDERSON 29750.00

BONUS COMP_RAMNK SALARY_RANK BONUS_RANK

1000.00
1000.00
a00.00
800.00
800.00
800.00
700.00
500.00
600.00
600.00
600.00

Lo I s U I s R T o T Y S P T % Y

—

000 00 = 00N B L) Ppa M =
Lo o Y o o T o R e e

© 2018 IBM Corporation

PARTITION BY Example

= Rank top entries by department
SELECT workdept, empno, lastname, salary+bonus AS TOTAL_SALARY,

RANK() OVER (PARTITION BY workdept

ORDER BY salary+bonus DESC) AS Salary_Rank
FROM employee
WHERE salary + bonus > 30000
ORDER BY workdept, lastname

Ranking is
restarted for
each
department
(partition)

WORKDEPT |EMPNO | LASTNAME TOTAL_SALARY SALARY_RANK
A0D 000010 |HAAS 53750.00 1
ADO 200010 HEMMINGER ... 47500.00 2
A0D 000110 |LUCCHESSI 47400.00 3
B01 000020 | THOMPSON ... 42050.00 1
col 000030 KWAN 39050.00 1
D11 200220 JOHN 30440.00 2
D11 000220 |LUTZ 30440.00 2
D11 000060 |STERN 32750.00 1
D21 Q00070 PULASKI 36870.00 1
E0l 000050 Rockets 40975.00 1
Ell 000090 | HENDERSON ... 30350.00 1

© 2018 IBM Corporation

OMNI 2018

LAG and LEAD Example

Compare the sales of stores within the same region
including comparisons to the stores that were adjacent in
terms of better and worse sales

SELECT store, region, sales,
sales - LAG(sales,1) OVER(PARTITION BY region ORDER BY sales)

AS prior_diff,

LEAD(sales,1) OVER(PARTITION BY region ORDER BY sales) - sales

AS next_diff

FROM stores ORDER BY region, sales

STORE REGION SALES PRIOR_DIFF NEXT_DIFF
Bobs NW 100,000.00 - 340,000.00
Toms NW 440,000.00 340,000.00 60,000.00
Mills NW 500,000.00 60,000.00 -
Targe SW 140,000.00 - 260,000.00
Menes SW 400,000.00 260,000.00 370,000.00
Caining SW 770,000.00 370,000.00 -
© 2018 IBM Corporation
LAG / LEAD Syntax

= LAG and LEAD specifications have additional options
to allow greater flexibility:

RESPECT NULLS
—LAG—(—expression r —l

|)

L,—offset LIGNORE NULLSJ

L,—default- vaIueJ

The offset is the offset to the lagging/leading row in the window
of the result set. It must be a positive integer and defaults to 1.

Default value is what to use if the expression is null.

Respect and ignore nulls apply to the expression. Ifitis null, it
is not included in the results.

© 2018 IBM Corporation

OMNI 2018

NTILE Example

Calculate the quartile ranking in terms of highest sales for all
stores:

SELECT store, region, sales,
NTILE(4) OVER(ORDER BY sales DESC)
quartile_rank,
FROM stores ORDER BY sales DESC

STORE REGION SALES QUARTILE_RANK
Caining SW 770,000.00 1
Mills NW 500,000.00 1
Toms NW 440,000.00 1
Menes SwW 400,000.00 2
Bobs NW 100,000.00 4

© 2018 IBM Corporation

CUME_DIST Example

Select the stores that are in the top 30 percent in terms
of sales:

WITH t AS
(SELECT store, region, sales,
CUME_DIST() OVER(ORDER BY sales DESC)
cume_dist FROM stores)
SELECT * FROM t WHERE cume_dist <= .30
ORDER BY sales DESC

STORE REGION SALES CUME_DIST
Caining SW 770,000.00 0.09
Mills NW 500,000.00 0.18

Toms NW 440,000.00 0.27

© 2018 IBM Corporation

OMNI 2018

Numbering Specifications

—ROW_NUMBER—(—)—O0VER—

(
Lwindow-part ition-c IauseJ Lwindow-order-c EauseJ

= ROW_NUMBER is the only supported numbering

specification.

= The window partition clause is optional.

)

= The window order clause is optional but defaults to an
arbitrary value based on implementation and not to the
ORDER BY for the statement's result set.

© 2018 IBM Corporation

ROW_NUMBER Example

= ROW_NUMBER can be used to assign a number to query result rows

SELECT ROW_NUMBER() OVER

(ORDER BY workdept, lastname) AS Nbr,

lastname, salary
FROM employee
ORDER BY workdept, lastname

SELECT workdept, lastname, hiredate,
ROW_NUMBER() OVER (PARTITION BY workdept

ORDER BY hiredate) AS Nbr
FROM employee
ORDER BY workdept, hiredate

© 2018 IBM Corporation

MEFR |§LASTMAME SALARY
13HAAS 52750.00
2HEMMINGER 46500.00¢
JPUCCHESSI 46500.00
4D'COMNMNELL 29240.00
s PRELAMDO 29250.00
WORKDEPT | LASTMAME HIFEDATE} MNER
A00 LUCCHESSl [1948-05-16 1
A00 O'COMMELL [1963-12-05 2
Al0 HAAS 1965-01-01 3
Al HEMMINGER |1965-01-01 4
A00 ORLANDO 1972-05-05 b
B01 THOMPSON [1973-10-10 1
cm QNTAMNA 1971-07-28 1
(1) KWAN 1975-04-05 2

OMNI 2018

10

Stateful versus Stateless Pagination

= Consuming large result sets in one transaction can result in
long response times and unhappy end users

= The concept of pagination or page-at-a-time has been

widely used in legacy applications
Developers took advantage of stateful, persistent connections
Database managed cursor positioning

= Browser based applications tend to be stateless
The database connection is not persistent
Cursor positioning must be handled within the client application

© 2018 IBM Corporation

Example of Stateful Pagination

Result set Ordering Unique key
row ordinal | Data (Encrypted)
= Stateful pseudo code position

OMNI 2018

Connect, Open 1 Abcd 1234
== Fetch First 5 rows 2 Abdc 3214
——> Fetch Next 5 rows 3 Acbd 4131
=) Fetch next 5 rows 4 Acdb 2143

Close, Disconnect 5 Bacd 1243

= The connection to the 0 Ecd 2541
. . 7 Bcad 4213

database is persistent
during the life of the cursor | - i ki
Urlng 9 Bdac 1423
= Subsequent fetches start at | Bdca =05)
the next sequential row 11 Bdca 3412
= Duplicate data spans pages | 12 Cadb 1324
13 Chad 4321

= Coding is simple

© 2018 IBM Corporation

Example of Stateless Pagination

= Stateless pseudo code Result set Ordering Unique key
~—, Connect, Open, Fetch first 5 rows, row ordinal | Data (Encrypted)
Close, Disconnect position
— Connect, Open, Fetch first 10 rows, =
Close, Disconnect ! Abcd =4
Connect, Open, Fetch first 15 rows, 2 Abdc 3214
Close, Disconnect 3 ebd 4131
= Cursor position is lost after close '
and disconnect 4 Acdb 2143
= Positioning datta must be preserved | 5 Bacd 1243
across connections
Ordering data and/or unique key 6 st 224
may not be suitable for positioning 7 Bcad 4213
= Application positioning results in 8 Beda 3142
slow response times
Previously fetched rows may be 9 Bdac 1423
retrieved multiple times 10 Bdca 2431
Copies of result sets are sometimes
made 11 Bdca 3412
= What if the ordinal position number | 45 Cadb 1324
was part of the result set?
13 Cbad 4321
© 2018 IBM Corporation
ROW_NUMBER To The Rescue!
Ordering Unique key
= Row Number pseudo code Data e
Connect, 1 Abcd 1234
— Open(row_number>=1), 5 o T
F_etch 5 rows, Close, 5 S TEE
Disconnect
4 Acdb 2143
Connect 5 Bacd 1243
’ B Bacd 234
Open(row_number>=6, i :
“ Fetch 5 rows, Close, ! Bead e
Disconnect g Hett 8142
9 Bdac 1423
Connect, 10 Bdca 2431
Open(row_number>=11, 1 Bdca 3412
== Fetch 5 rows, Close, 12 Cadb 1324
Disconnect 13 Cbad 4321

© 2018 IBM Corporation

OMNI 2018

12

Pagination Using ROW_NUMBER

ROWNER | EMPNO | FIRSTNME | MIDI... | LASTNAME
1/000150 |BRUCE ADAMSON
WITH rownum_cte AS 'Rownbr>= 1 2[z200340 [ROY R ALONZO
(SELECT empno, 3/000200 [DAVID BROWN
ROW_NUMBER() OVER 4/000340 [JASON R GOUNOT
— , 5/000010 [CHRISTINE |N HAAS
(ORDER BY lastname, firstnme)
AS rownbr | ROWNBR | EMP... |FIRSTNME | MIDI... | LASTNAME
FROM employee) : 6/200010 |DIAN J HEMMINGER ...
SELECT rownbr. AE.* FROM \Rownbr>=6 7000090 EILEEN W HENDERSON ...
’ 8000230 [JAMES J JEFFERSON
employee AE INNER JOIN 9200220 IREBA K JOHN
rownum_cte C 10/000260 |SYBIL P JOHNSON
ON AE.empno=C.empno ROWNBR | EM... | FIRSTNME | MIDI... | LASTNAME
WHERE rownbr >=? 11/000... [WILLIAM T JONES
12/000... SALLY A KWAN
ORDER BY rownbr (Rownbr>=11" 13550, wiNG LEE
14/000... VINCENZO |G LUCCHESSI
15/000... JENNIFER K LUTZ

= Key steps:

CTE must be used to compute the row number - OLAP specification not

allowed on WHERE clause

Computed row number used on WHERE clause to starting row for a page
ORDER BY guarantees the data will be ordered based on the

ROW_NUMBER window order

© 2018 IBM Corporation

OFFSET and LIMIT for Stateless Pagination

Connect,
—> SELECT...OFFSET O LIMIT 5
Fetch 5 rows, Close, Disconnect

Connect,
—)> SELECT...OFFSET 5 LIMIT 5
Fetch 5 rows, Close, Disconnect

Connect,
SELECT...OFFSET 10 LIMIT 5
Fetch 5 rows, Close, Disconnect

© 2018 IBM Corporation

Ordering Unique key
Data (Encrypted)

1 Abcd 1234

2 Abdc 3214

3 Acbd 4131

4 Acdb 2143

5 Bacd 1243

6 Bacd 2341

7 Bcad 4213

8 Bcda 3142

9 Bdac 1423

10 Bdca 2431

11 Bdca 3412

12 Cadb 1324

13 Cbad 4321

OMNI 2018

13

Aggregation Specifications

ggregate—function—————:]——ovER——(
LAP-aggregate-function I—window—partition—clause—J

r—RﬁNGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
[—RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW—

indow-order-clause

L—window-aggregation-group-clause

= Aggregation specifications are very powerful which also
means the syntax can be complicated.

* The big differences from ordering and numbering
specifications are in the RANGE and ROW clauses

© 2018 IBM Corporation

Aggregate Functions

AVG
CORRELATION
COUNT

COUNT BIG
COVARIANCE
COVARIANCE_SAM
F)

MAX

MEDIUM

MIN
PERCENTILE_CONT
PERCENTILE DISC
SUM

© 2018 IBM Corporation

Regression Functions

« REGR_AVGX

- REGR_AVGY

« REGR_COUNT

« REGR_INTERCEPT

- REGR_R2

- REGR_SLOPE

« REGR_SXX

- REGR_SXY
REGR_SYY

STDDEV
STDDEV_SAMP
VARIANCE
VARIANCE_SAMP

OMNI 2018

14

SUM Aggregate Functions

Return the detail store information and the total sales
by region plus the percentage the store contributed to
the total for the region:

SELECT store, region, sales,
SUM(sales) OVER(PARTITION BY region) region_total,
DECIMAL(100*sales / SUM (sales)

OVER(PARTITION BY region), 5,2) percentage
FROM stores ORDER BY region, percentage

STORE REGION SALES REGION_TOTAL PERCENTAGE
Wally NE 150,000.00 450,000.00 33.33
Pensk NE 300,000.00 450,000.00 66.66
Bobs NW 100,000.00 1,040,000.00 9.61
Toms NW 440,000.00 1,040,000.00 42.30
Mills NW 500,000.00 1,040,000.00 48.07

© 2018 IBM Corporation

SUM Aggregate Example — Rolling Sum

Return the detail store information and the rolling sum
of the store sales:

SELECT store, region, sales,

SUM(sales)

OVER(ORDER BY sales DESC) rolling_sum
FROM stores ORDER BY rolling_sum

STORE REGION SALES ROLLING_SUM
Caining SW 770,000.00 770,000.00
Mills NW 500,000.00 1,270,000.00
Toms NW 440,000.00 1,710,000.00
Menes SW 400,000.00 2,110,000.00
BBB SE 350,000.00 2,460,000.00

© 2018 IBM Corporation

OMNI 2018

15

Correlation, Covariance and Covariance_Samp

Use correlation and covariance to analyze the relationship
between salary and bonus for each department:

SELECT workdept,
CORRELATION(salary, bonus) correlation,
COVARIANCE(salary, bonus) covariance,
COVARIANCE_SAMP(salary, bonus) covariance_samp
FROM employee GROUP BY workdept ORDER BY workdept

WORKDEPT CORRELATION COVARIANCE COVARIANCE_SAMP
A00 0.976023 1,743,000 2,178,750
BO1 - 0 -
Co1 0.999835 574,437 765,916
D11 0.775424 240,454 264,500
E21 0.910221 68,944 82,733

© 2018 IBM Corporation

Correlation, Covariance and Covariance_Samp

Use the correlation and covariance aggregate functions in
an OLAP expression to further analyze for department
‘A0Q’ the relationship between salary and bonus:

SELECT empno,
CORRELATION(salary, bonus) OVER(PARTITION BY workdept
ORDER BY empno) correlation,
COVARIANCE(salary, bonus) OVER(PARTITION BY workdept
ORDER BY empno) covariance
FROM employee WHERE workdept = ‘A00’ ORDER BY empno

EMPNO CORRELATION COVARIANCE
000010 - 0
000110 1.000000 156,250
000120 0.999853 1,688,888
200010 0.962723 1,381,250
200120 0.976023 1,743,000

© 2018 IBM Corporation

OMNI 2018

16

Regression Aggregate Functions

Business questions:

* |s there a correlation
between the amount spent
on marketing and sales for a
product?

* |s the correlation weak or
strong?

» Can we predict sales based

on the amount spent on
marketing?

© 2018 IBM Corporation

Year/Quarter |Marketing |Sales

2014 N $70,100 $611,000
2014 Q2 $77,000 $657,000
2014 Q3 $72,100 $620,000
2014 Q4 $72,500 $623,000
20151 $78,300 $661,000
2015Q2 $74,500 $641,000
2015Q3 $74,000 $637,000
2015Q4 $72,400 $630,000
2016 1 $75,100 $644,000
2016 Q2 $76,000 $639,000

Regression Aggregate Functions

$670,000

5660,000

5650,000

$640,000

]
g
@
N $630,000 |

V= 6.1267x + 181696 |

$620,000 |

R*=0.9372

$610,000

$600,000

$69,000 $70000 $7L000 572,000 $73,000 &$74000 $75000 576000 $77,000 S$78000 579,000

Marketing

Business results:

Predict sales based

on marketing
budget

Predict with
confidence as R?
approaches 1

+ SELECT REGR_SLOPE (sales, mktg), REGR_INTERCEPT (sales, mktg)

FROM salesdata

- SELECT POWER (CORRELATION (sales, mktg), 2)

FROM salesdata

© 2018 IBM Corporation

OMNI 2018

17

OLAP Aggregation Specifications

first-value-function
last-value-function
nth-value-function

ratio-to-report-function—

rRESPECT NULLS—l
—FIRST VALUE—(—expression—)

LIGNORE NULLSJ

rRESPECT NULLS—
—LAST_VALUE—(—expression—)

L]GNORE NULLS—
—FROM FIRST RESPECT NULL

—NTH_VALUE—(—expression—,—n-expression—)

—FROM LﬁuSTJ LIGNORE NULI_SJ

—RATIO TO REPORT—(—expression—)

© 2018 IBM Corporation

FIRST, LAST, and NTH Value

Compare the sales of the current store to the store with the
best sales, second best sales, and the worst sales results:

SELECT store, sales,
sales - FIRST_VALUE(sales) OVER (ORDER BY sales DESC
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
behind_1st,
sales - NTH_VALUE(sales,2) OVER (ORDER BY sales DESC
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
behind_2nd,
sales - LAST_VALUE(sales) OVER (ORDER BY sales DESC
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
compared_to_last
FROM stores ORDER BY sales DESC

SALES BEHIND_1ST BEHIND_2ND COMPARED_TO_LAST

Caining 770,000.00 0.00 270,000.00 670,000.00
Mills 500,000.00 -270,000.00 0.00 400,000.00

Bobs 100,000.00 -670,000.00 -400,000.00 0.00

© 2018 IBM Corporation

OMNI 2018

RATIO TO REPORT Example

Calculate the quartile ranking for all stores and show their
overall sales percentage:

SELECT store, region, sales,
DECIMAL(RATIO_TO_REPORT(sales) OVER() *100, 10, 2) percent
FROM stores ORDER BY sales DESC

STORE REGION SALES PERCENT
Caining SW 770,000.00 21.10
Mills NW 500,000.00 13.70
Toms NW 440,000.00 12.05
Menes SW 400,000.00 10.96
Bobs NW 100,000.00 2.74

© 2018 IBM Corporation

Grouping Sets and Super Groups

= Many Bl applications and OLAP tools involve hierarchical,

multi-dimensional aggregate views of transaction data
Users need to view results at multiple levels
Users need to view result data from different perspective

Current grouping support only allows aggregation data of along a
SINGLE dimension

EXAMPLE: SELECT country region, store, product, SUM(sales)
FROM trans
GROUP BY country, region, store, product

Limitations result in extra coding for programmers

= 6.1 grouping and OLAP capabilities allow data to be grouped in
multiple ways with a single SQL request
ROLLUP
CUBE
GROUPING SETS

Less Coding
for Developers!

© 2018 IBM Corporation

OMNI 2018

19

ROLLUP

= An extension to the GROUP BY clause that produces a
result set containing sub-total rows in addition to the
"regular” grouped rows

= Sub-total rows are "super-aggregate” rows that contain
further aggregates whose values are derived by applying
the same column functions that were used to obtain the
grouped rows

= ROLLUP on the GROUP BY clause results in DB2

returning aggregates for each level of the hierarchy
implicitly represented in the grouping columns

© 2018 IBM Corporation

ROLLUP

= ROLLUP(Country, Region) will result in the data being
summarized at the following levels
(Country, Region)
(Country)
() <<represents Grand Total

= Example Query:
SELECT country, region, SUM(sales)
FROM trans
GROUP BY ROLLUP (country, region)

© 2018 IBM Corporation

OMNI 2018

20

ROLLUP Output Example

SELECT country, region, SUM(sales) FROM trans
GROUP BY ROLLUP (country, region)

GROUP BY

country,NULL Country Region Sum(Sales)
Canada - 100,000
i Canada NW 100,000
USA - 3,250,000
USA NE 450,000
USA NW 940,000
USA SE 550,000
GROUP BY USA SW 1,310,000
NULL, NULL - - 3,350,000
ROLLUP Output Example
SELECT country, region, SUM(sales) FROM trans
GROUP BY ROLLUP (country, region)
ORDER BY country, region
Gc%i)rl]{rpy,%{”_,_ Country Region Sum(Sales)
Canada NW 100,000
Canada - 100,000
USA NE 450,000
USA NW 940,000
USA SE 550,000
USA SW 1,310,000
GROUP BY USA - 3,250,000
NULL, NULL - - 3,350,000

© 2018 IBM Corporation

OMNI 2018

21

ROLLUP Output Example

SELECT IFNULL(country,GRAND’),
IFNULL(region, TOTAL), You can also use
SUM(sales) FROM trans COALESCE and CASE

for formatting

GROUP BY ROLLUP (country, region)
ORDER BY country, region

Country Region Sum(Sales)
Canada NW 100,000
Canada TOTAL 100,000

USA NE 450,000
USA NW 940,000
USA SE 550,000
USA SW 1,310,000
USA TOTAL 3,250,000
GRAND TOTAL 3,350,000

© 2018 IBM Corporation

CUBE

= An extension to the GROUP BY clause that produces a
result set that contains all the rows of a ROLLUP
aggregation, plus contains "cross-tabulation” rows

= Cross-tabulation rows are additional "super-aggregate”
rows that are not part of an aggregation with sub-totals

= CUBE on the GROUP BY clause results in DB2 returning
aggregates for all possible distinct combinations
represented by the grouping columns

© 2018 IBM Corporation

OMNI 2018

22

CUBE

= CUBE(Country, Region) will result in the data being
summarized at the following levels
(Country, Region)
(Country)
(Region)
() <<represents Grand Total

= Returns results at multiple intersection points

= Example Query:
SELECT country, region, SUM(sales)
FROM trans
GROUP BY CUBE(country, region)

© 2018 IBM Corporation

CUBE Output Example

SELECT country,region, SUM(sales) FROM trans
GROUP BY CUBE (country, region)

Country Region Sum(Sales)

GROUP BY NULL, region - NE 450000
- NW 1040000

- SE 550000

GROUP BY NULL, NULL - SW 1310000
\ - - 3350000

Canada - 100000

/ USA - 3250000

GROUP BY country, NULL Canada NW 100000
USA NE 450000

USA NW 940000

USA SE 550000

02018 18M Gorporaton USA SW 1310000

OMNI 2018

23

CUBE Output Example

SELECT country,region, SUM(sales) FROM trans
GROUP BY CUBE (country, region)

ORDER BY country,region)
Country Region Sum(Sales)

Canada NW 100000

Canada - 100000

USA NE 450000

GROUP BY country, NULL USA NW 940000
USA SE 550000

USA SW 1310000

USA - 3250000

GROUP BY NULL, region — o NE 450000
- NW 1040000

- SE 550000

GROUP BY NULL, NULL - SW 1310000
I - 3350000

GROUPING SETS

= Allows multiple grouping clauses to be specified in a single
statement

= This can be thought of as the union of two or more groups
of rows into a single result set

= GROUPING SET on the GROUP BY clause enables DB2
to return aggregates for multiple sets of grouping columns

© 2018 IBM Corporation

OMNI 2018

24

GROUPING SETS

= GROUPING SETS((Country, Region), (Country, Store)) will
result in the data being summarized at the following levels
(Country, Region)
(Country, Store)

= CUBE and ROLLUP can be used in combination with
Grouping Sets

CAUTION: These types of combinations can result in an
exponential growth in the number of grouping sets returned by a
query, combine carefully

= Example Query:
SELECT country, region, SUM(sales)
FROM trans
GROUP BY
GROUPING SETS((country, region), (country, store))

© 2018 IBM Corporation

GROUPING SETS Output Example

SELECT country, region, store, SUM(sales)

OMNI 2018

FROM trans Country Region Store Sum(Sales)
GROUP BY
GROUPING SETS Canada |NW - 100,000
((country, region), (country, store)] jsa NE - 450 000
GROUP BY USA NW - 940,000
COUNTRY, REGION
USA SE - 550,000
USA SwW - 1,310,000
Canada |- Dougs 100,000
USA - Mariahs 350,000
USA - KMs 770,000
GROUP BY
COUNTRY, STORE USA - Jennas 400,000
USA - Adrians 500,000
USA - Joshs 300,000
USA - TZs 200,000
USA - Maddies 210,000

© 2018 IBM Corporation

GROUPING

= The GROUPING function can be used to determine if null

values are from underlying user data or DB2 aggregate
processing

Function returns 1 if grouping column contains NULL value produced
by grouping set or super group processing

Function returns 0 if grouping column contains “real” GROUP BY
value

EXAMPLE: SELECT country,region, store, GROUPING(store), SUM(sales)
FROM trans
WHERE transYear = 2006
GROUP BY

GROUPING SETS ((country, region),(country, store))

© 2018 IBM Corporation

Grouping Sets & Super Groups: View Considerations

= Grouping Set & Super Groups produce additional rows not in

underlying table. WHERE clause can cause different results
> Filtering part of View virtual table definition OR...
» Filtering applied to retrieval of rows from View virtual table

CREATE VIEW v1 AS
SELECT country, region, SUM(sales) FROM trans

WHERE country = 'USA' Country Region Sum(Sales)
GROUP BY ROLLUP (country, region) USA NE 450,000
USA NW 940,000

SELECT * FROM v1 \ USA SE 550,000
USA sw 1,310,000

USA - 3,250,000

3,250,000

CREATE VIEW v2 AS

SELECT country, region, SUM(sales) FROM trans Country Region Sum(Sales)
GROUP BY ROLLUP (country, region) USA. NE 450,000
USA NW 940,000

SELECT * FROM v2 WHERE country='USA' USA SE 550,000

USA sSwW 1,310,000
USA - 3,250,000

© 2018 IBM Corporation

OMNI 2018

26

Where does
Db2 Web Query for i
fitin?

© 2018 IBM Corporation

Salary Analysis

= Your HR department wants to ensure salaries are
equitable across the company and across departments
and there aren’t outliers or other discrepancies

What is the employee’s salary compared to the average
WITHIN their department?

What is an employee’s ratio of salary within their department
and overall company?

For each employee, compare their salary to the two closest
behind this person’s salary, and the two closest ahead of them
in salary

?

© 2018 IBM Corporation

OMNI 2018

27

The Process — Create SQL Views
View for Salary compared to AVERAGE

1

2

3

4 DB2ICOEZ

5 -- Standards Option: DB2 for 1

6 CREARTE VIEW SARMPLEDB.CMPTORVG (

7 EMPNOC,

g WORKLEFT,

9 SRLARYL,

10 RBOVE OR_BELOW _AVG,

11 DEPT_ W& SALLRY,

1z DELTR)

13 ES

14

15 SELECT EMPNO, WOREDEFT, SALRRY,

18 CRSE

17 WHEN (SALRRY - {AT;‘G{SELER‘E:ll CVER (PARTITICN BY HDRKDEPT:lb:l >0
13 THEN '...I5 REOVE AVG'

19 WHEN (SALRRY - {AVG{SEL&R‘E;' CVER (FARTITICN BY WORKDEPET))) |< 0
20 THEN '...I5 BELOW AVG'

21 ELSE '...I53 EQUAL TO AVE'

22 END AS RBOVE_OR_BELOW_AVG,

23 DECIMAL{AVG({SALARY) |OVER (PARTITICN BY WORKDEFT))| AS DEPT_AWVG SALRRY,
24 DECIMAL {SRLRERY - (AWVS(SALARY) |C-'¢'ER {EARTITICN BY WOREDEFT) I:l LS DELTRA
25 TFROM SAMPLEDE.EMPLOYEE;

2R

© 2018 IBM Corporation

The Process — Create SQL Views ...
View for 2 ahead and 2 behind

l -

8 - V7R3MO 160422

3 L.

4 _—

5 -- Standards Option:

6 CREATE VIEW SAMPLEDB.LAGLEAD (

7 WORKDEPT ,

8 EMPNO,

] SALARY ,

10 LEAD SALARY 1,

11 LEAD SALARY 2,

12 LAG SALARY 1,

13 LAG_SALARY 2)

14 RS

15 SELECT WORKDEPT, EMPNO, SALARY,

16 | LEAD(SALARY, 1) OVER (PARTITICN BY WORKDEPl‘l
17 ORDER BY SALARY) as LEAD SALARY 1,
18 | LEAD(SALARY, 2) OVER (PARTITION BY WORKDEPT |
19 CRDER BY 2
20 LAG(SALARY, 1) OVER (PARTITICN BY WORKDEPT
21 CRDER BY SALARY) as LAG SALARY 1,

22 [IAG(SRLRRY, 2) OVER (PARTITION BY WORKDEPT
23 ORDER BY SALARY) as LAG SALARY 2

24 FROM SAMPLEDB.EMPLOYEE

25 WHERE WORKDEPT = 'DI11"

26

27 RCDFMI LAGLEAD H

© 2018 IBM Corporation

OMNI 2018

28

The Process — Create Synonyms

= Within Db2 Web Query, create a “synonym” (term for meta
data) over each of the SQL Views

These are fields >

returned from the
view

© 2018 IBM Corporation

[DB2 Web Query T706M Server on DEZICOEZRCHLANDIBM.COM - Google Chrome

@ db2icoe.rehland.ibm.com 123

H&E

Applications Adapters

11/ webgquery/webconsole/IWAYN

Metadata | Sign In As Different User

|ODE_EDASERVE/wc/bestart html

% |

EXrEN T

E]

IC.48

Properties Fidd Seqmml Dimension Business MA Toggle Full / || Insert
View Grid View
Properties || || TreeView || Insert ||
x|l
i olaplolsp_laglead [F§ property View | 1 Text view |
= il OLAP_LAGLEAD
= vy
= WORKDEPT
= EMPNO General
= SALARY © FIELDNAME | WORKDEPT
.:I LEAD Y 0 aLlas WORKDEPT
= LEAD_SALARY_2 = z
=] LAG_sALaRY 1 MISSING
Ie] LAG_SALARY 2 @ Key Component
0 TImE
0 ACTUAL A3
Q Type Alpha fices
0 Length 3
0 UsAGE A3
0 Type Alpha fixed
© Length 3
© Options

% Access File View | [Fields | B Data | TE K

The Process — Build Reports

= Build Your Reports/Charts/Dashboards with Db2 Web

Query InfoAssist
— Add additional filters or virtual fields
— Format header/footer/stylesheet

— Choose output
* Excel, HTM

L, mobile

— Add to dashboard

— Embed in your

— Feed into your data warehouse

© 2018 IBM Corporation

app

These are fields m—)
returned from the

view and available

in your report

[Salary Lag Lead Repon - DB2 Wb Query inaAssat - Google Chrome

Ili__l
= [ragurery -
B s
a R Y_L
0 LEAD SMARY 2
S [l -

Salary Comparison
Using LAG and LEAD

it nt
" o =
{1l 21240, T

o COXIB0 2134000 M0 Jasbo 00 %000
o1 00140 2223000 24480 00 2ae80 00 1134000

B CONIT0 J4680.00 2468000 8000 e 1
200170 24580.00 25280.00 27740.00 24840,00

L OO0 I5260.00 17740.00 194000 1468000 D
it 000000 2774000 29840.00 29840.00 25280,00

on COOTI0 I9H40.00 2984000 %00 me ¥
00020 2984000 135000 = 19840,00

-} 000060 322%0.00 . a0 2

B e e D

OMNI 2018

29

Examples

Comparison
Dept Employee No. Salary to average
AO0 000010 52750.00 ...IS ABOVE AVG
000110 46500.00 ...IS ABOVE AVG
000120 29250.00 ...IS BELOW AVG
200010 46500.00 ...IS ABOVE AVG
200120 29250.00 ...IS BELOW AVG
BO1 000020 41250.00 ...IS EQUAL TO AVG
€01 000030 38250.00 ...IS ABOVE AVG
000130 23800.00 ...IS BELOW AVG
000140 28420.00 ...IS BELOW AVG
200140 28420.00 ...IS BELOW AVG
D11 000060 32250.00 ...IS ABOVE AVG
000150 25280.00 ...IS ABOVE AVG
000160 22250.00 ...IS BELOW AVG
000170 24680.00 ...IS BELOW AVG
000180 21340.00 ...IS BELOW AVG
000190 20450.00 ...IS BELOW AVG
000200 27740.00 ...IS ABOVE AVG
000210 18270.00 ...IS BELOW AVG
000220 29840.00 ...IS ABOVE AVG
200170 24680.00 ...IS BELOW AVG
200220 29840.00 ...IS ABOVE AVG

Comparison to

Average Salary of Dept

000070

Average
Dept Sala DELTA
40850 11900
40850 5650
40850 -11600
40850 5650
40850 -11600
41250 0
29722 8527
29722 -5922
29722 -1302
29722 -1302
25147 7102
25147 132
25147 -2897
25147 -467
25147 -3807
25147 -4697
25147 2592
25147 -6877
25147 4692
25147 -467
25147 4692

5668 01

o0
© 2018 IBM Corporation o
N
Z
WORKDEPT:
CIe®E
Salaries compared to Ratios for Employees
Department Average in Department D11
For Dept D11
f‘.’JKi
0K |
i \ AN\ /_/
eSS N
15K |
10K
5K)
IOEOG(O 000150 000160 000170 000180 000190 000200 000210 000220 200170 200220
Empioyee No.
B SALARY B DEPT_AVG_SALARY
355
3D<|
25K |
20|
156 |
IC'J<|
5\
b nnaren 00180 000160 000170 000150 000200 000220 oy
MNext Highest, D11 > 000210: 20.450.00 Dit on on
WORKDEPT : EMPNO 30

© 2018 IBM Corporation

W SALARY

B Hext Highest

W 2nd Next Highest Il Just Behind

i 2 Behind

Db2 Web Query Version 2.2.1

= Steps beyond traditional Business Intelligence into Data Discovery

New data driven Visualization empowers:
- Users, Analysts, and Data scientists

Data layers (e.g., demographics) for geographic maps
- What is the average income in this zip code?

= Consolidate, Prepare, and Transform Data with DataMigrator ETL
Even augment existing data with data from Watson

» |nstall or upgrade in 15 minutes with the “EZ-Install” Package
- Includes 100’s of sample reports, for the business and I/T

@oeas %
o=

R I: I
Learn more at E £
ibm.biz/db2webqueryi =] R 4610

and
db2webqueryi.blogspot.com

=

1,039

© 2018 IBM Corporation

Turning Data into Insight

N
S e e
DATA Analytics >
A

OLAP is Online Analytical Processing

Rich function available directly on DB2 for i
* No need to move the data elsewherel!

© 2018 IBM Corporation

OMNI 2018

31

© 2018 IBM Corporation

OMNI 2018

32

