
© 2019 IBM Corporation

Strategy and best practice for
modern RPG

Barbara Morris

IBM

© 2019 IBM Corporation 2

Agenda

• Learn the features of ILE RPG that allow you to
write "modern" code

• Learn which old features and customs to avoid

• Learn about how to improve the performance of
your calls

• Learn how using service programs can modernize
your development

© 2019 IBM Corporation

Use mixed-case names for your
procedures

© 2019 IBM Corporation 4

Use EXTPROC(*DCLCASE) for your procedures

Compare these two call stacks:

• Using RPG's default of uppercasing names:

5 QUOCMD QSYS /03B3

PGMSTK BMORRIS _QRNP_PEP_PGMSTK

PGMSTK BMORRIS 6 HANDLEORDER

PGMSTK BMORRIS 10 CHECKCUSTSTATUS

PGMSTK BMORRIS 14 GETCUSTID

• Using a mixed case name:

5 QUOCMD QSYS /03B3

PGMSTK BMORRIS _QRNP_PEP_PGMSTK

PGMSTK BMORRIS 6 handleOrder

PGMSTK BMORRIS 10 checkCustStatus

PGMSTK BMORRIS 14 getCustId

© 2019 IBM Corporation 5

Use EXTPROC(*DCLCASE) for your procedures

Using mixed-case names makes your joblog easier to follow
too:

MCH1211 Escape 40 17/09/05 13:37:55.210768

From module : PGMSTK

From procedure : getCustId

Statement : 15

© 2019 IBM Corporation 6

Use EXTPROC(*DCLCASE) for your procedures

An easy way to get mixed-case names is to use
EXTPROC(*DCLCASE) on your prototype or procedure
interface:

dcl-proc handleOrder;

dcl-pi *n extproc(*dclcase) end-pi;

If you add or change EXTPROC:

• Recompile everything that uses the prototype

• Fix your CL to have the mixed-case name

CALLPRC ‘handleOrder’

• Fix your binder source to have the mixed-case

EXPORT(“handleOrder”)

© 2019 IBM Corporation

Bullet-proof your /COPY files

© 2019 IBM Corporation 8

Bullet-proof your /copy files

Problem:

If you have a date, time, character, UCS-2 or graphic
definition in a /copy file, there could be a mismatch between
the modules using the /copy file.

Copy file:

dcl-pr handleOrder;

dueDate date const; // No format!

Program calling the procedure:

ctl-opt datfmt(*ymd);

/copy orderPr

handleOrder (%date()); ; // Date error!

© 2019 IBM Corporation 9

Bullet-proof your /copy files

What if you usually have DATFMT(*MDY) in the H spec?

Module defining the procedure:

ctl-opt datfmt(*mdy);

/copy orderPr

dcl-proc handleOrder export;

Program calling the procedure:

ctl-opt datfmt(*dmy);

/copy orderPr

handleOrder (%date());

21/02/19

Caller: Feb 21, 2019

Proc: ? 2, 2019

Bad date exception

11/02/19

Caller: Feb 11, 2019

Proc: Nov 2, 2019

Silent error!

A silent error is much worse than an exception!

© 2019 IBM Corporation 10

Bullet-proof your /copy files

Problem:

A more subtle issue could be a prototype with a character
parameter in a copy file.

Copy file:

dcl-pr sendMessage;

message varchar(100) const;

Program calling the procedure:

ctl-opt ccsid(*char:500);

/copy msgPr

sendMsg (‘Hello!’);

If the job CCSID is 37,
sendMsg receives

‘Hello|’

Not exclamation mark!

(Only a few characters are
different between 37 and
500)

You might never discover this in testing!

© 2019 IBM Corporation 11

Bullet-proof your /copy files

Difficult solution:

You could add the required keywords to every definition in
the copy file.

Easy solution:

Use the /SET directive to set copy-file defaults for DATFMT,
TIMFMT, and the character, UCS-2 and graphic CCSIDS.

The defaults set by /SET will stay in effect until the copy file
ends.

/SET DATFMT(*ISO) CCSID(*CHAR : *JOBRUN)

Also see the /RESTORE directive, if you want to use /SET to
temporarily set new defaults for just part of a source member.

© 2019 IBM Corporation

Avoid the RPG cycle

© 2019 IBM Corporation 13

Linear-main modules

The RPG cycle is rarely needed any more. Most programmers
don't really think about how setting on LR or coding a RETURN
prevents the calculations from looping, but that's how the cycle
works.

dsply 'hello';

*inlr = *off;

If I run this program, this is how the joblog looks:

DSPLY hello (many more before this)

DSPLY hello

DSPLY hello

DSPLY hello

5 > *SYSTEM/ENDRQS

Last request at level 4 ended.

I had to do a SYS-REQ to stop
the program from looping forever

The compiler requires *INLR to be set,
but it doesn't care what it is set to.

© 2019 IBM Corporation 14

Linear-main modules

Since 6.1, you can designate one subprocedure to be the main
procedure of your program.

The calculations for a subprocedure begin at the beginning and
end at the end, so the calculations are "linear" rather than
"cyclical".

ctl-opt main(sayHello);

dcl-proc sayHello;

dsply 'hello';

end-proc;

If I run this program, this is how the joblog looks:

DSPLY hello

© 2019 IBM Corporation

Working with partial arrays

© 2019 IBM Corporation 16

Partial arrays

Most arrays have a maximum number of elements, but not all
elements are actually being used.

In the past, programmers had some difficulty keeping the array
sorted.

After sorting the array, blanks go to the top:

' '
' '
'Adams '
'Campbell '
'Jackson '

© 2019 IBM Corporation 17

Partial arrays

The trick that programmers used was to initialize the array to
*HIVAL, so the unused elements would sort to the end.

Now, after sorting the array, *HIVAL elements go to the end:

'Adams '
'Campbell '
'Jackson '
'************' (x'FF's)
'************'

But that trick isn't needed any more. There's no need to sort the
entire array if only the first few elements are being used.

© 2019 IBM Corporation 18

Partial arrays

With %SUBARR, you can limit the sort to only the elements
you're using:

SORTA %SUBARR(arr : 1 : num_arr_elems);

Use %SUBARR to set a subset of the elements:

%SUBARR(arr : start : num_per_page) = 'x';

To search only some elements of the array, specify the extra
parameters for %LOOKUP:

index = %LOOKUP('Jack' : arr : 1 : num_arr_elems);

© 2019 IBM Corporation 19

Use varying-dimension arrays instead

Starting in 7.4 ...

You can avoid the problem of using partial arrays by defining
your array as varying-dimension (see 'What's new in 7.4)

dcl-s array1 char(10) dim(*VAR:10);

dcl-s array2 char(10) dim(*AUTO:10);

© 2019 IBM Corporation

Use varying-length strings

© 2019 IBM Corporation 21

Varying-length strings

If you have a lot of %TRIM in your code

• Consider using varying-length strings instead

• If you can't change your field to be varying length

• Copy it (with one %TRIM) to a varying-length field

© 2019 IBM Corporation 22

Varying-length strings, before

dcl-pi *n;
lib char(10) const;
file char(10) const;

end-pi;
dcl-s cmd char(100);

cmd = 'DSPPFM ' + %trim(lib) + '/' + %trim(file)
+ ' OUTPUT(*PRINT)';

callp(e) QCMDEXC (cmd : %len(%trim(cmd)));
if %error();

report ('File ' + %trim(file) + 'does not exist '
+ 'in library ' + %trim(lib) + '.');

endif;

© 2019 IBM Corporation 23

Varying-length strings, after

dcl-pi *n;
libParm char(10) const;
fileParm char(10) const;

end-pi;
dcl-s lib varchar(10);
dcl-s file varchar(10);
dcl-s cmd varchar(100);

lib = %trim(libParm);
file = %trim(fileParm);

cmd = 'DSPPFM ' + lib + '/' + file
+ ' OUTPUT(*PRINT)';

callp(e) QCMDEXC (cmd : %len(cmd));
if %error();

report ('File ' + file + 'does not exist '
+ 'in library ' + lib + '.');

endif;

© 2019 IBM Corporation 24

Varying-length strings, compare the calculations

Before
cmd = 'DSPPFM ' + %trim(lib) + '/' + %trim(file)

+ ' OUTPUT(*PRINT)';
callp(e) QCMDEXC (cmd : %len(%trim(cmd)));
if %error();

report ('File ' + %trim(file) + 'does not exist '
+ 'in library ' + %trim(lib) + '.');

endif;

After

cmd = 'DSPPFM ' + lib + '/' + file
+ ' OUTPUT(*PRINT)';

callp(e) QCMDEXC (cmd : %len(cmd));
if %error();

report ('File ' + file + 'does not exist '
+ 'in library ' + lib + '.');

endif;

Not just "nicer",
but usually faster

© 2019 IBM Corporation

Passing a trimmed parameter

© 2019 IBM Corporation 26

Passing a trimmed parameter

To pass a parameter that should always be trimmed

The hard way - always remember to code %TRIM

dcl-pr getFileInfo;
file varchar(101) const;

end-pr;
getFileInfo (%trim(filename));

The easy way - let OPTIONS(*TRIM) handle trimming

dcl-pr getFileInfo;
file varchar(101) const options(*trim);

end-pr;
getFileInfo (filename);

© 2019 IBM Corporation 27

Null-terminated string parameters

To pass a parameter that ends with x'00' (a null-terminator)

The hard way - manually add the x'00'

dcl-pr openIfsfile extproc('open');
file char(101) const;
… more parameters

end-pr;
openIfsfile (%trim(filename) + x'00);

The easy way - let OPTIONS(*STRING) handle the x'00'

dcl-pr openIfsfile extproc('open');
file pointer value options(*string);
… more parameters

end-pr;
openIfsfile (%trim(filename));

© 2019 IBM Corporation 28

Null-terminated string parameters

Use OPTIONS *STRING and *TRIM together

dcl-pr openIfsfile extproc('open');
file pointer value options(*string : *trim);
… more parameters

end-pr;
openIfsfile (filename);

The passed parameter will be trimmed even if you pass a
pointer

dcl-s pName pointer inz(%addr(name));
dcl-s name char(100);

name = ‘myfile.txt ’ + x’00; // ADD THIS

openIfsFile (pName); // procedure receives "myfile.txt"

© 2019 IBM Corporation

Using data structures for I/O

© 2019 IBM Corporation 30

Consider using data structures for I/O

A great feature of RPG is that it's NOT necessary to use data
structures for I/O.

When you do I/O without a data structure, RPG copies the data
from the I/O buffer into your program fields or it copies the data
from your program fields into the I/O buffer. One field may be a
standalone field, and others may be subfields in various data
structures.

This is a central feature of RPG. It can be wonderful when the
same field is used in two different files.

© 2019 IBM Corporation 31

Consider using data structures for I/O

But it's not always the best choice.

Sometimes it's better to control where the data is read into or
written from.

read custfile; // Where is the data going?

read custfile custDs; // custDs gets the data

© 2019 IBM Corporation

Names

© 2019 IBM Corporation 33

Naming conventions

The most important rule is Be Consistent

• If you use abbreviations, have one standard abbreviation

• If the standard is that "cvt" is used for "convert", don't name the procedure
convertDate or convDate, name it cvtDate

• Use camelCaseNames or underscore_names, but not both

Maximize readability

• Name procedures with verb + noun: placeOrder,
terminateAccount.

• Name most variables with noun, or adjective + noun: quantity,
yearlyTotal

• Name indicators with conditions: isValid, orderSuccessful,
exitKeyPressed …

© 2019 IBM Corporation 34

Use qualified names

read ordRec;
dow not %eof(ord92);

ok = checkInventory (city : item_id : quantity);
...

read ordRec;
enddo;

read ord92.ordRec order;
dow not %eof(ord92);

ok = checkInventory (cust.city
: order.item_id : order.quantity);

...

read ord92.ordRec order;
enddo;

It's a bit more code, but it's easy to
see where everything comes from

Is "city" something that was set by the
READ operation? Is "ordRec" really a
record in file "ord92"?

© 2019 IBM Corporation 35

A bonus if you use qualified file names

The file’s fields are available as standalone fields.
Programmers forget they should only use the data structure

dcl-f orders;
dcl-ds orderDs likerec(orderRec);

read orderRec orderDs; // read into the DS
if quantity = 0; // BUG, should be orderDs.quantity

Qualify the file to avoid even having those standalone fields

dcl-f orders qualified;
dcl-ds orderDs likerec(orders.orderRec);

read orders.orderRec orderDs; // read into the DS
if quantity = 0; // Compile error. Field doesn't exist

Getting the error at compile-time is always better!

© 2019 IBM Corporation 36

Use alias names

You probably have nice readable alternate names for your files.
But you may also have less readable short names.

dcl-f orders;
...

if ordqty > 0;
placeOrder (ordId : cstId : ordqty

: splcty : cstcty); // "splcty" ???

Using the alternate (alias) names:

dcl-f orders alias;
...

if order_quantity > 0;
placeOrder (order_id : customer_id : order_quantity

: supplier_city : customer_city);

© 2019 IBM Corporation 37

Changing your code to use ALIAS names

Currently, it is not easy to switch a program to use alias names

To use Rdi’s renaming feature (Source > Refactor > Rename)

• For each field in the file used in your program

• Use “Rename” to rename the field to the alias name

• Click “Continue” when it warns it being an externally-
described field

• Repeat for any LIKEREC data structures

• Repeat for any externally-described data structures

• Finally, add the ALIAS keyword to the file

© 2019 IBM Corporation 38

RFE for RDi to make it easier to add ALIAS to a file

Vote for RFE 125314

• Sign in at http://www.ibm.com/developerworks/rfe

• Click on “Search”

• Check “I want to specify the brand, product family, and product”

• Brand: Servers and Systems Software

• Product family: Programming Languages

• Product: Developer for Power Systems

• Put “ALIAS” in the “Keywords” box

• Click on the “Search” button at the bottom

• Open the RFE and click on “Vote” on the right-hand side

http://www.ibm.com/developerworks/rfe

© 2019 IBM Corporation

Defining complex data structures

© 2019 IBM Corporation 40

Defining complex data structures

Until very recently, there was only one way to define a complex
data structure:

1. Define a template for the sub-data structures

2. Define the sub-data structures using LIKEDS

dcl-ds emp_t qualified template;
name varchar(25);
salary packed(7 : 2);
is_manager ind;

end-ds;

dcl-ds dept qualified;
num_emps int(10);
emps likeds(emp_t) dim(30);

end-ds;

The more levels of nesting, the more difficult to understand.

© 2019 IBM Corporation 41

Defining complex data structures

Now, it's possible to directly define the sub data structures.

dcl-ds dept qualified;
num_emps int(10);
dcl-ds emps dim(30);

name varchar(25);
salary packed(7 : 2);
is_manager ind;

end-ds;
end-ds;

© 2019 IBM Corporation

Take advantage of all 63 digits for
numeric procedures

© 2019 IBM Corporation 43

Procedures to handle numeric values of any length

Historically, OPM RPG supported a maximum of 30 digits. ILE
RPG supported 31 digits.

Since V5R3, ILE RPG supports 63 digits.

But many programmers still define their "generic" numeric
procedures with 31 digits. For example, defining a procedure
with a packed(31:9) parameter.

Better:

Take advantage of the entire 63 digit range. If 9 decimal places
will always be adequate, define the parameter as packed(63:9).

Or sacrifice a few integer places and increase the accuracy by
defining the parameter as packed(63:15).

© 2019 IBM Corporation

How to define a 'binary' field in
RPG

© 2019 IBM Corporation 45

How to define a 4-byte binary for an API?

Historically, RPG only supported a somewhat bizarre form of
binary.

RPG forces a 4-byte "binary" field (9 digits and 0 decimals) to
have a range of only -999,999,999 to 999,999,999

This means that the "binary" field is basically being treated as a
decimal value.

But the true range of a 4-byte binary is

-2,147,483,648 to 2,147,483,647

Sometimes the full range is necessary for an API or an INFDS

© 2019 IBM Corporation 46

How to define a 4-byte binary for an API?

Since V3R2/V3R6, ILE RPG has supported true integers, both
signed and unsigned.

• INT(10) (10i 0) and UNS(10) (10u 0) define true binary

• BINDEC(9) (9b 0) defines "binary decimal"

RPG’s "binary" type should almost always be avoided.

One possible exception is to save space if you want a decimal
number.

• A 9-digit packed value requires 5 bytes

• A 9-digit binary value only requires 4 bytes

It’s very rare now to care about space to that extent.

© 2019 IBM Corporation 47

Binary fields in externally described files and DS

By default, RPG treats binary fields in externally-described files
and data structures as BINDEC fields.

• Fields defined with type 'B' in DDS

• Fields defined as SMALLINT, BIGINT etc in SQL

To have RPG treat these fields as true integer, code
EXTBININT(*YES) in your H spec.

Recommendation: Add EXTBININT(*YES) to the set of H spec
keywords that are added to every module

© 2019 IBM Corporation

RPG's bizarre default CCSID for
character fields

© 2019 IBM Corporation 49

RPG's bizarre default CCSID for character fields

By default, RPG assumes that alphanumeric fields have the job
CCSID.

Actually, that's not quite true.

RPG assumes that the fields have the mixed SBCS/DBCS
CCSID related to the job CCSID.

• SBCS means “Single byte character set”, characters used in
languages like English, Spanish, French, Russian etc.

• DBCS means “Double byte character set”, characters used
in languages like Japanese or Chinese.

If your job CCSID is 37, RPG assumes that your alphanumeric
fields have CCSID 937 (supporting both English and Chinese).

Why does this matter?

© 2019 IBM Corporation 50

RPG's bizarre default CCSID for character fields

Normally, this doesn't matter.

But if you have x'0E' in your field, and that field gets assigned
to a UCS-2 field, the x'0E' would be interpreted as a "shift-out"
character, and all the data following it would be interpreted as
Chinese double byte characters. The UCS-2 field would not
have the correct value.

Solution: Add CCSID(*CHAR:*JOBRUN) to your H spec.

Recommendation: Add CCSID(*CHAR:*JOBRUN) to the set
of H spec keywords that are added to every module.

© 2019 IBM Corporation

Assigning data structures to each
other

© 2019 IBM Corporation 52

Assigning data structures

RPG considers a data structure to be also a character string.

You can assign one data structure to another using EVAL.

eval ds1 = ds2;

This is fine as long as

• The data structures have identical subfields

• The data structures don't have any null-capable subfields

© 2019 IBM Corporation 53

Assigning data structures

Rather than using EVAL, use EVAL-CORR ("corresponding").

EVAL-CORR assigns subfield by subfield.

• Subfields that have the same name and compatible data
types are assigned. Null indicators are also assigned for null-
capable subfields.

• Other subfields are ignored.

Use the EVAL-CORR Summary in the listing to see exactly
what is happening for an EVAL-CORR operation.

If two data structures are related by LIKEDS, EVAL-CORR will
just copy all the data at once, so there is no need to worry
about performance.

© 2019 IBM Corporation

Handling cleanup tasks

© 2019 IBM Corporation 55

Handling cleanup tasks

To ensure that cleanup tasks are done at the end of a
procedure, careful programmers have historically defined a
"cleanup" procedure. The cleanup procedure is called

• just before a procedure returns

• from a cancel handler enabled by the CEERTX API

This can be awkward and error-prone

• The cleanup procedure may need access to several
variables from the procedure needing the cleanup

• A maintenance programmer may add an early return and
forget to add the call to the cleanup procedure

© 2019 IBM Corporation 56

Handling cleanup tasks

The solution

Put the cleanup tasks in the ON-EXIT section of the procedure.

dcl-proc myproc;
...
p = %alloc(1000);
...
if not %found;

return;
endif;
...

on-exit;
dealloc p;

end-proc;

The ON-EXIT section is always run, no matter how the
procedure ends.

© 2019 IBM Corporation

Call performance

© 2019 IBM Corporation 58

Call performance

There are two aspects that can slow down your calls

• Large return values

• Large parameters passed by value

© 2019 IBM Corporation 59

Improve the performance for large return values

Use the RTNPARM keyword

• With RTNPARM, the procedure doesn't technically return a
value

• Instead, the return value is handled as an extra hidden
parameter passed by reference

• For procedures that return large varying-length strings, using
RTNPARM can dramatically improve performance

Make sure

• You change both the prototype and the procedure interface

• You recompile all callers

© 2019 IBM Corporation 60

Improve the performance of large VALUE parameters

• Use CONST instead

• If you want to modify the parameter within the procedure,
copy it to a temporary variable

When a parameter is passed by value, the system actually
copies its value twice while passing the parameter.

• A huge improvement over the original Seven Times

© 2019 IBM Corporation 61

Improve the performance of large VALUE parameters

Consider a VARCHAR(1000) parameter, with the value 'Hello'.

• The system doesn't know that only 7 bytes are important (2
bytes for the length-prefix and 5 bytes for 'Hello)

• So the system copies the entire 1002 bytes (twice) while
passing the parameter (2004 bytes)

• If you code CONST instead of VALUE, the system only sees
a pointer being passed, so it copies the 16-byte pointer twice
(32 bytes)

• If you want to modify the CONST parameter within the
procedure

• When you copy it to a local variable, it will only have to
copy 7 bytes (total 32 + 7 bytes)

© 2019 IBM Corporation

Privacy for variables, procedures,
and files

© 2019 IBM Corporation 63

Privacy

There are 5 levels of privacy available to an ILE programmer.

• Local to a procedure: the file or variable can only be used within the
procedure

• Global in the module: the procedure, file, or variable can be used by
any procedure in the module

• Exported from the module: the variable or procedure can be used by
any other module in the same program or service program that imports
the variable or calls the procedure

• Exported from the service program: the variable or procedure can be
used by anything that binds to the service program and imports the
variable or calls the procedure

• Public: anyone or any program can call a program

© 2019 IBM Corporation 64

Privacy

The more private something is, the easier it is to change how it
is defined or used.

Rules of thumb:

• Within a module, avoid global variables and global files when
possible

• Think carefully about which procedures you export from a
service program. If you have a utility module within the
service program, export the utility procedures from the
module, but if they are specific to the service program, don't
export them from the service program.

• Only use programs for things that need to be programs.
Otherwise, use procedures in service programs to restrict
them from being called from the command line.

© 2019 IBM Corporation

Use service programs

© 2019 IBM Corporation 66

Modernize development with service programs

The goal is to be able to easily

• reuse your code without having to copy it to make small
modifications

• modify your code without being worried about the impact of
your changes

Both goals can be achieved by having many small procedures
which only do one thing

Other non-general procedures can combine calls to these
procedures to do application-specific things

© 2019 IBM Corporation 67

Why service programs?

Instead of having separate procedures, you could use
separate programs, but …

Why are service programs better?

• Better control of privacy

• Fewer objects in your libraries

• If you have zillions of small routines, it’s “nicer” to have a
few service programs than a zillion little programs

• If you have several related procedures, they can be in the
same module

• reduce module initialization time at runtime

• easier maintenance if similar changes have to be made
to several procedures

© 2019 IBM Corporation 68

© Copyright IBM Corporation 2018. All rights reserved.

The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible
for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials
to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way.

IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

© 2019 IBM Corporation 69

Special notices
This document was developed for IBM offerings in the United States as of the date of publication. IBM may not make these offerings

available in other countries, and the information is subject to change without notice. Consult your local IBM business contact for information

on the IBM offerings available in your area.

Information in this document concerning non-IBM products was obtained from the suppliers of these products or other public sources.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not

give you any license to these patents. Send license inquires, in writing, to IBM Director of Licensing, IBM Corporation, New Castle Drive,

Armonk, NY 10504-1785 USA.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and

objectives only.

The information contained in this document has not been submitted to any formal IBM test and is provided "AS IS" with no warranties or

guarantees either expressed or implied.

All examples cited or described in this document are presented as illustrations of the manner in which some IBM products can be used

and the results that may be achieved. Actual environmental costs and performance characteristics will vary depending on individual client

configurations and conditions.

IBM Global Financing offerings are provided through IBM Credit Corporation in the United States and other IBM subsidiaries and divisions

worldwide to qualified commercial and government clients. Rates are based on a client's credit rating, financing terms, offering type,

equipment type and options, and may vary by country. Other restrictions may apply. Rates and offerings are subject to change, extension

or withdrawal without notice.

IBM is not responsible for printing errors in this document that result in pricing or information inaccuracies.

All prices shown are IBM's United States suggested list prices and are subject to change without notice; reseller prices may vary.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and

are dependent on many factors including system hardware configuration and software design and configuration. Some measurements

quoted in this document may have been made on development-level systems. There is no guarantee these measurements will be the

same on generally-available systems. Some measurements quoted in this document may have been estimated through extrapolation.

Users of this document should verify the applicable data for their specific environment.

© 2019 IBM Corporation 70

Special notices
IBM, the IBM logo, ibm.com AIX, AIX (logo), AIX 6 (logo), AS/400, BladeCenter, Blue Gene, ClusterProven, DB2, ESCON, i5/OS, i5/OS (logo), IBM

Business Partner (logo), IntelliStation, LoadLeveler, Lotus, Lotus Notes, Notes, Operating System/400, OS/400, PartnerLink, PartnerWorld, PowerPC,

pSeries, Rational, RISC System/6000, RS/6000, THINK, Tivoli, Tivoli (logo), Tivoli Management Environment, WebSphere, xSeries, z/OS, zSeries, AIX

5L, Chiphopper, Chipkill, Cloudscape, DB2 Universal Database, DS4000, DS6000, DS8000, EnergyScale, Enterprise Workload Manager, General

Purpose File System, , GPFS, HACMP, HACMP/6000, HASM, IBM Systems Director Active Energy Manager, iSeries, Micro-Partitioning, POWER,

PowerExecutive, PowerVM, PowerVM (logo), PowerHA, Power Architecture, Power Everywhere, Power Family, POWER Hypervisor, Power Systems,

Power Systems (logo), Power Systems Software, Power Systems Software (logo), POWER2, POWER3, POWER4, POWER4+, POWER5, POWER5+,

POWER6, POWER6+, System i, System p, System p5, System Storage, System z, Tivoli Enterprise, TME 10, Workload Partitions Manager and X-

Architecture are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If

these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols

indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered

or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at

www.ibm.com/legal/copytrade.shtml

The Power Architecture and Power.org wordmarks and the Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

UNIX is a registered trademark of The Open Group in the United States, other countries or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.

Microsoft, Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries or both.

Intel, Itanium, Pentium are registered trademarks and Xeon is a trademark of Intel Corporation or its subsidiaries in the United States, other countries or

both.

AMD Opteron is a trademark of Advanced Micro Devices, Inc.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries or both.

TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).

SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap and

SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).

NetBench is a registered trademark of Ziff Davis Media in the United States, other countries or both.

AltiVec is a trademark of Freescale Semiconductor, Inc.

Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc.

InfiniBand, InfiniBand Trade Association and the InfiniBand design marks are trademarks and/or service marks of the InfiniBand Trade Association.

Other company, product and service names may be trademarks or service marks of others.

