
OMNI Users group
January 21, 2020.

Larry “DrFranken” Bolhuis lbolhuis@frankeni.com
Frankeni Technology Consulting, LLC 616.855.1667
Grand Rapids, MI www.frankeni.com

 This ain’t your father’s CL!

 CL is capable of being written in a way that is much
more modular than ever before.
◦ Use of the dreaded “goto” is relegated to history!

 Standard constructs that you’ve probably used in
other languages for years are now properly part of
CL.

 We will work our way through the parts of a CL
program and look at the things CL didn’t use to
have that enable more modern code to be used.

 *CMD (Command) objects will be covered as well.

 In OS/400 V5R1 GUI command prompting was added to iNav
and other interfaces. This was ‘cool.’
◦ Implementation is XML to a Java applet. Used in WDSC, iNav,

Access for web, and others.

 In OS/400 V5R2 the ability to digitally sign your command
objects was introduced. This was ‘a waste of time.’
◦ It was the only thing CL got in V5R2… 

 In i5/OS V5R3 we got new data types, increased parameter
lengths and counts, new commands and more. These are
‘Awesome’

 In IBM i 5.4 a continuation of what was delivered in V5R3 is
provided. This is ‘Spectacular.’

 In IBM i 6.1 previous enhancements have been enhanced! This
is ‘Encouraging’.

 In IBM i 7.1 more enhancements arrive. This was ‘Amazing.’
 Since then the major language enhancements have ended but

various handy features have been delivered.
 IBM is still open to enhancments but the big items are

delivered.

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 Add TYPE(*PTR) on DCL statement
 New %ADDRESS built-in to set pointer
 New %OFFSET built-in to store pointer

offset
 Add *BASED attribute on DCL statement
 Add *DEFINED attribute on DCL statement
 Allow pointer to be used with %SUBSTRING
 Makes many functions available to ILE CL
◦ Full record-level file I/O
◦ String functions

 New TYPE values on DCL statement
 Value
◦ *PTR – Pointer

 DCL &SAMPLEPTR *PTR
◦ Declares a pointer CL variable named &SAMPLEPTR which

is a space pointer at the machine interface level

 DCL &CHARPTR *PTR ADDRESS(&CHAR)
◦ Declares a pointer CL variable, &CHARPTR that is

populated with the address of previously defined
variable &CHAR

 Pointers are 16 bytes long
◦ 128 Bit Address Space yields 16 Bytes.

/* Character variable in Automatic Storage */

DCL &CHAR *CHAR LEN(10)

/* Pointer variable with address of &CHAR */

DCL &PTR *PTR ADDRESS(&CHAR)

 The second DCL command declares a pointer
variable which is initialized to point to the
&CHAR variable in the program's automatic
storage.

 Comprised of two new parms on DCL
statement

 Parms:
◦ STG(*BASED) (Storage is based on a pointer)
 Default for this new parm is *AUTO for Automatic Storage

 This is for compatibility with all previous OS versions

◦ BASPTR(&PTR1) (Points to the storage for the
variable.)

 DCL &CHAR1 *CHAR 10 STG(*BASED)
BASPTR(&PTR1)
◦ Declares a 10-byte character CL variable named

&CHAR1 that is based on the pointer CL variable
&PTR1

/ * A pointer variable */

DCL &PTR2 *PTR2

/* A variable based on the pointer variable above. */

DCL &CHAR2 *CHAR LEN(10) STG(*BASED)
BASPTR(&PTR2)

 The second DCL command declares a character variable
which is found at the location addressed by the &PTR2
variable.

 Before &CHAR2 can be used, &PTR2 must be initialized
to a valid address by using the %ADDRESS built-in
function.

 Comprised of two new parms on DCL
statement

 Parms:
◦ STG(*DEFINED)
 Storage is Defined within another var.

 Requires the following:

◦ DEFVAR(&CHAR3 3)
 Part one defines the host variable this variable is defined

inside of.

 Part two designates the starting position within the host
variable

 Effectively data structures and subfields for CL

/* Character variable in Automatic Storage */

DCL &CHAR3 *CHAR LEN(100)

/* Defined variable hosted by above variable */

DCL &DEC1 *DEC LEN(10 5) STG(*DEFINED)
DEFVAR(&CHAR3 3)
◦ Declares a 10-digit (packed) decimal CL variable,

&DEC1

◦ &DEC1 is hosted by &CHAR3 (which is in automatic
storage)

◦ &DEC1 begins in position 3 of &CHAR3

/* Fully Qualified Object Name (Also used as incoming PARM
value) */

DCL &QUALOBJ *CHAR LEN(20)

/* Object name only - Bytes 1-10 of fully qualified name */
DCL &OBJ *CHAR LEN(10) STG(*DEFINED) DEFVAR(&QUALOBJ 1)

/* Library name only – Bytes 11-20 of fully qualified name */
DCL &LIB *CHAR LEN(10) STG(*DEFINED) DEFVAR(&QUALOBJ 11)

 The first DCL command declares a 20-character variable in the
program's automatic storage.

 The second DCL command declares a variable named &OBJ which
refers to the first 10 characters of the &QUALOBJ variable.

 The last DCL command declares a variable named &LIB which can
be used to reference the last 10 characters of the &QUALOBJ
variable.

 Very useful for situations where you are pulling apart a defined
data structure!

/ * Character variable */
DCL &CHAR4 *CHAR4 LEN(48)

/* Pointer variable defined in &CHAR4 */
DCL &PTR *PTR STG(*DEFINED)

DEFVAR(&CHAR4 17)

 The second DCL command declares a pointer
variable in bytes 17 through 32 of the variable
&CHAR4.
◦ Pointers are 16 bytes long.

 Essentially this points out that it’s not relevant
which type of variable the hosted variable is.

Declare CL Variable (DCL) (New)

Type choices, press Enter.

CL variable name ___________ Variable name
Type _____ *DEC, *CHAR,

*LGL, *INT, *UINT, *PTR
Storage *AUTO___ *AUTO, *BASED,

*DEFINED
Length of variable:
Length ______ Number
Decimal positions . . . ______ Number

Initial value _________________________
__ ...
Basing pointer variable . ___________ Variable name
Defined on variable:
CL variable name ___________ Variable name
Position 1_____ 1-32767

Address:
CL variable name ___________ Variable name
Offset 0_____ 0-32766

/ * A pointer variable */
DCL &PTR3 *PTR

/* A variable based on the pointer variable above. */
DCL &CHAR5 *CHAR LEN(10) STG(*BASED) BASPTR(&PTR3)

/* A character variable in automatic storage */
DCL &ACHAR *CHAR LEN(10)

CHGVAR VAR(&PTR3) VALUE(%ADDRESS(&ACHAR))

 CHGVAR command places the address of &ACHAR
into the pointer variable &PTR3

 References to variable &CHAR5 will reference the
same storage as &ACHAR.

 Much "cleaner" than using %BIN
◦ Use the value natively

 Useful for
◦ passing parameters to IBM i APIs

◦ passing parameters to other HLL programs

 Command PARM statement will allows
RTNVAL(*YES) for integer parameters

 New TYPE values on DCL statement

 Values
◦ *INT – Integer

◦ *UINT Unsigned Integer

 chosen for consistency with PARM TYPE values

 LEN(2) and LEN(4) supported

 OPM does not fully support 8-byte integers
internally so they cannot be supported in the
language.

 New LEN(8) supported in CLLE
 Support for both types
◦ *INT – Integer
◦ *UINT Unsigned Integer

 As stated previously, OPM does not fully
support 8-byte integers internally so no
LEN(8) support coming there.

 This is important support for API calls as
more and more are utilizing 8 byte support.

 For a very long time the help text for DCL
claimed a max length of 4.
◦ If your systems says this you need to get PTFs. 

 On the following slide we’ll examine a sample program
that puts together Pointers, Offsets, Based and Defined
variables.

 Variable &VAR is a text variable of 500 characters.
 Variable &ARY is a text variable that is based on pointer

&PTR and is 50 bytes long.
 Variables &BYT0110, &BYT1120 etc are defined as

overlaying variable &ARY.
 Pointer &PTR is initialized to the first position of &VAR

thus overlaying &ARY and the &BYTnnnn variables.
 In the loop the offset is incremented by 50 bytes thus

giving us a view of each 50 bytes in the array.
 This technique is well used in parsing the data coming

back from API calls in User Spaces.

PGM

DCL VAR(&VAR) TYPE(*CHAR) LEN(500) +

VALUE('a111456789a222456789a333456789a444456789a555456789+

... j111456789j222456789j333456789j444456789j555456789‘)

DCL &PTR TYPE(*PTR)

DCL &ARY TYPE(*CHAR) STG(*BASED) LEN(50) BASPTR(&PTR)

DCL &BYT0110 TYPE(*CHAR) STG(*DEFINED) LEN(10) DEFVAR(&ARY 01)

DCL &BYT4150 TYPE(*CHAR) STG(*DEFINED) LEN(10) DEFVAR(&ARY 41)

DCL &OFS TYPE(*INT) LEN(4) VALUE(1)

CHGVAR &PTR %ADDRESS(&VAR) /* Pointer points at var &VAR */

/* As a result &ARY now overlays first 50 bytes of &VAR */

CHGVAR &OFS %OFFSET(&PTR) /* Offset initialized to first byte */

DOFOR VAR(&INT) FROM(1) TO(10) /* Actual string parse code
*/

CHGVAR &TEXT (&BYT0110 || '=' || &BYT1120 || '=' ||

&BYT2130 || '=' || &BYT3140 || '=' || &BYT4150)

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA(&TEXT) +

TOPGMQ(*EXT) MSGTYPE(*STATUS)

DLYJOB DLY(2)

CHGVAR &OFS (&OFS + 50)

CHGVAR %OFFSET(&PTR) &OFS

ENDDO

ENDPGM

 New special value *NULL

 Used for setting or testing pointer variables.
◦ Example DCL &PTR *PTR ADDRESS(*NULL)

 IF (&PTR *EQ *NULL) ….
◦ Test easily for a null pointer value preventing

execution errrors.

 Previous limit was 9999 bytes for CL
variables declared as TYPE(*CHAR)

 New limit is 32767 bytes for TYPE(*CHAR)

 DCLF will not generate CL variables for
character fields longer than 9999 bytes in a
record format; same compile-time error
◦ V5R4 Removed this limitation.

 Limit for TYPE(*CHAR) and TYPE(*PNAME) on
PARM, ELEM, and QUAL command definition
statements stays at 5000 bytes

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 CALLPRC (Call Procedure) command
supports calls from ILE CL procedures to
other ILE procedures

 In prior releases, CALLPRC only supported
passing parameters "by reference"

 Can specify *BYREF or *BYVAL special value
for each parameter being passed
◦ CALLPRC PARM((&PARM1 [*BYREF/*BYVAL]))

 Enables ILE CL to call many MI and C
functions and other OS/400 procedure APIs

 Maximum numbers of parameters still 300

 Previous limit was 40 for PGM and TFRCTL,
and 99 for CALL command

 New limit is 255 parameters for PGM, CALL,
and TFRCTL

 Limit for CALLPRC (only allowed in ILE CL
procedures) will stay at 300

 Number of PARM statements in a CL
command will stay at 99

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 Supports up to 5 file "instances"
 Instances can be for the same file or different

files
 New OPNID (Open identifier) parameter added

to DCLF statement
 Default for OPNID is *NONE
◦ Only one DCLF allowed with OPNID(*NONE)

 OPNID accepts 10-character name (*SNAME)

◦ DCLF FILE(LIBA/FILE1) OPNID(OPENIDENT5)

 If OPNID name specified, declared CL variables
are prefixed by this name and an underscore

 So FLDA is defined as &OPENIDENT5_FLDA

 OPNID also added to existing file input/output
CL statements
◦ RCVF

◦ ENDRCV

◦ SNDF

◦ SNDRCVF

◦ WAIT

CL6: PGM
DCLF FILE(OBJLST) OPNID(P1) /* NEW OPNID */

DCLF FILE(OBJLST) OPNID(P2)

LOOP1: RCVF OPNID(P1) /* NEW OPNID */
MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(LOOP1B))
CHGVAR VAR(&COUNT) VALUE(&COUNT + 1)

/* Note OPNID is Prepended to variable name VVVVVVVVVV */
CHGVAR &TOTSIZE VALUE(&TOTSIZE + &P1_ODOBSZ)
GOTO CMDLBL(LOOP1)

LOOP1B: CHGVAR VAR(&TTOTSIZE) VALUE(&TOTSIZE)
CHGVAR VAR(&TCOUNT2) VALUE(&COUNT)
CHGVAR VAR(&COUNT) VALUE(0)

LOOP2: RCVF OPNID(P2)
MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(LOOP2B))
CHGVAR VAR(&COUNT) VALUE(&COUNT + 1)
CHGVAR VAR(&TOBJSIZE) VALUE(&P2_ODOBSZ)
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) …
GOTO CMDLBL(LOOP2)

LOOP2B: ENDPGM

Syntax:
CLOSE OPNID(P1)
 New command CLOSE supports closing DB Files.
◦ Single OPNID (Open identifier) parameter
◦ Default for OPNID is *NONE (Consistency!)

 OPNID accepts 10-character name (*SNAME type)
 The next use of RCVF will implicitly reopen the file.
◦ The record pointer will be reset to the same

record it was the first time.
◦ This USUALLY means the beginning of the file but

if previously deleted records before that record
are now occupied, they may not be read.

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

Syntax:

DCLPRCOPT SUBRSTACK(99)

 Indicates the maximum number of
subroutine levels allowed at run time.
◦ Min value is 20

◦ Default is 99

◦ Maximum is 9999

 Must be placed in the ‘DCL Section’ of the
program (Before executables.)

 Only one per program.

 Each of the additional parms override the
corresponding parm of the CRTxxx CMD

 These parms have no defaults.
◦ Allows the CRTxxx Defaults to work.

 Overrides shown on the compile printout.

 Not all parms apply to all CRTxxx CMDs
◦ i.e. some for OPM only, some for ILE only.

 While we’re talking about compiling, ILE programs
can be complied from IFS Source (i 7.3)
◦ CRTCLMOD and CRTBNDCL

 LOG(*JOB *YES *NO)
◦ LOG CL Commands.

 RTVCLSRC(*YES *NO) [OPM Only]
◦ Allow retrival of CL Source from compiled object.

 TEXT(‘description goes here’ *SRCMBRTXT *BLANK)
◦ Place this text on the compiled object.

 USRPRF(*USER *OWNER)
◦ Specifies which profile to use during run-time for authority

checking.

◦ Ignored for REPLACE(*YES) on existing PGM

 AND MORE, Prompt DCLPRCOPT to see them all

.. A very brief interlude…
 ILE programs can be complied from IFS Source
 Supports use of GIT et al for source storage
 Can be full path to source, or a file name only in which case

the job’s current working directory is appended.
 Mutually exclusive to SRCMBR and SRCFILE Parms
 Support arrived in i 7.3
 Supported by CRTCLMOD and CRTBNDCL
 NOT supported by old form CL

Program ______ Name
Library *CURLIB Name, *CURLIB

Source file QCLSRC Name
Library *LIBL Name, *LIBL, *CURLIB

Source member *PGM Name, *PGM
Source stream file . . _____________________________

 AUT(*LIBCRTAUT *CHANGE *ALL *USE *EXCLUDE
autl)
◦ Specifies the authority to users who do not have any explicit

authority to the object.
◦ Ignored for REPLACE(*YES) on existing PGM

 SRTSEQ(*HEX *JOB *JOBRUN….) or (lib/obj)
◦ Specifies the sort sequence to use for the job.
◦ Details on the command 

 LANGID(*JOBRUN *JOB language-ID)
◦ Language ID to use for the job.

 STGMDL(*SNGLVL *TERASPACE) [CRTBNDCL only]
◦ *SNGLVL runs only in a single-level storage activation group
◦ *TERASPACE runs only in a teraspace activation group.

 DFTACTGRP(*YES) NOT allowed with *TERASPACE

 DFTACTGRP(*YES *NO) [CRTBNDCL only]
◦ Specifies if the program is associated with the default activation

group.

 ACTGRP(*STGMDL *CALLER *NEW) [ILE CL]
◦ Specifies the activation group that the ILE CL program runs in.

 BNDSRVPGM(library/name Generic_name *ALL)
◦ Specifies the service program or programs to search for

unresolved module requests at bind time.

 BNDDIR(*NONE) or (library/directory)
[CRTBNDCL only]
◦ Specifies the list of binding directories used in symbol resolution.

◦ Used only if unresolved imports exist after modules and service
programs are considered.

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

Syntax:
INCLUDE SRCMBR(ANINCLUDE)

SRCFILE(library/file)
 Defines a source member to include at compile

time.
 SRCMBR Parm defines the source member to

include (required)
 SRCFILE Defaults to *SRCFILE
◦ *SRCFILE default is the file this CL program is in.

 Initially INCLUDE was not allowed within an
Included source, that is, no nesting.

Syntax addition for compile commands:
INCFILE(library/file)

 INCFILE Default is *SRCFILE
◦ Indicates the include members are found in the

same source file as the CL source member being
compiled.

 Specifying a file and optionally a library
overrides the file for any INCLUDE
specifying *SRCFILE

 CRTCLPGM, CRTCLMOD and CRTBNDCL all
support this parm.

Retrieve CL Source enhanced to optionally
retrieve the included source.

RTVINCSRC(*YES, *NO)

 Default is *NO

 Specifying *YES will generate source that
has the included source embedded into it.
◦ The INCLUDE line is NOT regenerated, rather the

included source represents what was compiled.

 Specifying *NO will include the original
INCLUDE command in the retrieved source

 INCLUDE will be supported within INCLUDE
members.

 No limit to the number of includes (in the O/S
anyway) YOU may go crazy if they go too deep!

 I created a trivial CLLE Program that included
itself. (Note: This is bad practice! )

◦ The compile took about 2 minutes to fail with an
MCH2804: “Tried to go larger than storage limit for
object.”

 Followed by CPF2524 RC 5: “the exception handler for an
exception was an internal procedure that was already
busy handling a previous exception. ”

.. Another interlude…

 As ILE programs can be now complied from IFS
Source, the INCLUDE statement can also reference
IFS source.

 Also arrived in i 7.3
 Also supported by CRTCLMOD and CRTBNDCL only.
◦ These commands gain new OPTIONAL parameter INCDIR.

 Up to 32 directories may be specified .

INCLUDE SRCSTMF(‘AnIncludeFileHere.cl’)
◦ This full path form ignores INCDIR

◦ Default is the path the source member is found in.

INCLUDE SRCSTMF('/home/ldb/anninclude.cl’)

 NOT supported by old form CL
◦ You can key it in but the compile will fail CPD0043

 Speaking of retrieving source from CL
Programs!

 Support includes
◦ *MODULE

◦ *PGM

◦ *SRVPGM

 CRTCLMOD and CRTBNDCL commands get
new parm.

◦ ALWRTVCLSRC

 Default *YES as it is for CRTCLPGM

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

Additional ‘standard’ control flow commands:

 DOWHILE, DOUNTIL, DOFOR

Each support
◦ LEAVE

◦ ITERATE

 CASE
SELECT, WHEN, OTHERWISE, ENDSELECT

25 level nesting

 Loop starts with the DOxxx statement
◦ The DOxxx statement supports a label (note this)

 ENDDO marks end of loop
◦ All types of DO loop use ENDDO

 ITERATE – Discontinue processing
remainder of code before ENDDO and
transfer to label on DOxxx
◦ Can be the label on the current DOxxx or loops

external to this loop
◦ If no label given the current DOxxx loop is

assumed

 LEAVE – Discontinue processing remainder
of loop and jump to statement following the
matching ENDDO
◦ Can be the label on the DOxxx or the DOxxx

loops external to this loop
◦ If no label given the current DOxxx loop is

assumed

 Can be nested (up to 25 levels)
◦ i.e. you could have a DOWHILE loop within a

DOFOR loop
◦ or a DOWHILE inside a DOWHILE etc.

 Same COND support as IF statement in CL

 Evaluates COND at "top" of loop

 A simple example:

DCL VAR(&LGL) TYPE(*LGL) VALUE('1')

:

DOWHILE COND(&LGL)

: (group of CL commands)

ENDDO

 Same COND support as IF statement in CL

 Evaluates COND at "bottom" of loop

 A simple example:

DCL VAR(&LGL) TYPE(*LGL) VALUE('0')

:

DOUNTIL COND(&LGL)

: (group of CL commands)

ENDDO

Syntax:
DOFOR VAR() FROM() TO() BY()

 BY defaults to '1', other parameters are
required

 VAR must be *INT or *UINT variable
 FROM and TO can be integer constants,

expressions, or variables
 BY must be an integer constant (can be

negative)
 FROM/TO expressions are evaluated at loop

initiation; TO evaluated after increment
 Checks for loop exit at "top" of loop

 Allowed only within a DOWHILE, DOUNTIL or
DOFOR group

 Both support LABEL to allow jump out of multiple
(nested) loops

 Both default to *CURRENT loop
 LEAVE passes control to next CL statement

following loop ENDDO
 ITERATE passes control to end of loop and tests

loop exit condition
TAG: DOXXX

ITERATE TAG
LEAVE TAG

ENDDO /* Iterate transfer here */
/* Leave would transfer here */

LP1: DOUNTIL &FLAG1=0
LP2: DOWHILE &FLAG2=1
LP3: DOFOR &COUNT FROM(1) TO(10)

BY(2)
/* Statements */
LEAVE /* Jumps to (a) */
/* Statements */
LEAVE LP1 /* Jumps to (c) */
/* Statements */
ITERATE LP2 /* Jumps to (b) */
/* Statements */
ENDDO /* End of DOFOR */

(a) (b) ENDDO /* End of DOWHILE */
ENDDO /* End of DOUNTIL */

(c) /* Statement after ENDDO */

 SELECT starts a group; this command has no
parameters

 There must be at least one WHEN clause
◦ Has COND and THEN support (like IF)
◦ To execute multiple statements must use DO/ENDDO
◦ Unlimited number of WHEN clauses may exist

 There may optionally be one OTHERWISE
◦ Run if no WHEN statement COND = True
◦ Single parm of CMD (like ELSE)
◦ Again needs DO/ENDDO for multiple statements

 ENDSELECT ends group; this command has no
parameters

SELECT /* Begin of select group */

WHEN COND((&COUNT *EQ 4) *AND (&COUNT2 *EQ 2)) THEN(DO)

..some important stuff...

ENDDO

WHEN COND(&COUNT *EQ 6) THEN(DO)

..different important stuff..

ENDDO

WHEN COND(&COUNT *EQ 3.141592654) THEN(CALLSUBR DESERT)

OTHERWISE CMD(DO) /* OTHERWISE is optional */

..default stuff..

ENDDO

ENDSELECT /* End of select group */

 Select group indent on compile printouts.

 New value *DOSLTLVL for the OPTION()
parameter on:
◦ CRTCLPGM

◦ CRTCLMOD

◦ CRTBNDCL

 This new parm tells the compiler to add a new column on
the left with the nesting level.

 Default is *NODOSLTLVL which is same as today.

 Supports DO, DOFOR, DOUNTIL, DOWHILE and
SELECT

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 New BIFs
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 All variables are global.
◦ DCL* not allowed within a SUBR/ENDSUBR pair

 Recursion Allowed? YES!
◦ Tried that. It works!

 Four Components
◦ SUBR

 Begin of Subroutine Definition

◦ ENDSUBR
 End of Subroutine Definition

◦ CALLSUBR
 Call a Subroutine

◦ RTNSUBR
 Return from a Subroutine

Defines the beginning of the subroutine

SUBR SUBR(subroutine_name)
 A tag is optional.
◦ May not be used to get into the subroutine
◦ Used only to return to it’s beginning from

within it.
 (you know with um, er, …. GOTO)

 SUBR cannot be between another
SUBR/ENDSUBR pair (no nesting of definitions)

Defines the end of the subroutine

ENDSUBR RTNVAL(return_var)
◦ Optional variable must be *INT of LEN(4)
◦ Can also return a constant
◦ Value is returned to caller such as error code.

 When execution reaches ENDSUBR
execution passes to the statement following
the CALLSUBR that invoked this subroutine

 ENDSUBR cannot be between another
SUBR/ENDSUBR pair (again no nesting)

Defines another return from subroutine point

RTNSUBR RTNVAL(return_var)
◦ Optional variable must be *INT of LEN(4)
◦ Can also return a constant
◦ Value is returned to caller such as error code.

 Upon execution of RTNSUBR execution
passes to the statement following the
CALLSUBR that invoked this subroutine

 RTNSUBR Must be between SUBR/ENDSUBR
pair

Call a subroutine

CALLSUBR SUBR(subroutine_name)
RTNVAL(return_var)
◦ Optional RTNVAL variable must be *INT of LEN(4)

◦ Value is return only NOT passed into subroutine.

 May be between SUBR/ENDSUBR pair

SUBR: PGM
DCL &SIGNINT *INT /* Regular Signed Integer */
DCL &SIGNINT2 *INT /* Regular Signed Integer */
DCL &SIGNINTT *CHAR 5 /* Character Representataion */

CHGVAR &SIGNINT 1

DOWHILE COND(&SIGNINT < 100)

CALLSUBR SUBR(SUBR1) RTNVAL(&SIGNINT2)
CHGVAR &SIGNINT &SIGNINT2
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) +

TOPGMQ(*EXT) MSGTYPE(*STATUS)
DLYJOB 2

ENDDO

SUBR SUBR(SUBR1) /* Beginning of the subroutine */
CHGVAR &SIGNINT (&SIGNINT + 1)
IF (&SIGNINT > 50) THEN(DO)

RTNSUBR RTNVAL(&SIGNINT) /* Return from here */
ENDDO
CHGVAR &SIGNINT (&SIGNINT + 10)
CALLSUBR SUBR(SUBR1) RTNVAR(&SIGNINT)

ENDSUBR RTNVAL(&SIGNINT) /* End of the subroutine */
DAEND: ENDPGM

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 New BIFs
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 Six new BIFS are provided by this PTF, 3 are:
◦ %TRIM – Trim from both ends
◦ %TRIML – Trim from Left (leading) end.
◦ %TRIMR – Trim from Right (trailing) end.

Each has Two parms.
1) Variable to Trim
2) Character(s) to Trim

%TRIM(&VAR) - Trim Spaces (default)
%TRIMR(&VAR ‘*.’) - Trim Splats and periods.
%TRIML(&VAR &CHARS) – Trim what's in &CHARS

DCL &VAR *CHAR 40 ' This is a Text Variable. '

SNDMSG MSG('"' || %TRIM(&VAR) || '"')

 "This is a Text Variable."

SNDMSG MSG('"' || %TRIML(&VAR) || '"')

 "This is a Text Variable. “

SNDMSG MSG('"' || %TRIMR(&VAR ‘. ‘) || '"‘) [<-.space]

 " This is a Text Variable" [spaces and . Trimmed]

 Remaining new BIFS are:
◦ %CHECK – Check Characters
◦ %CHECKR – Check Characters from right (trailing) end
◦ %SCAN – Scan for Characters

Each has three parameters.
1) Character(s) to look for (Comparator)
2) Character(s) to look at (Base-String)
3) Starting Position (Optional)

Each returns a numeric value.
A non-zero indicates position.
A zero indicates none found.

Returns first position of base string that contains a
character that does NOT appear in comparator string.

DCL &Str *CHAR 27 'ABCDEFGHIJKLMNO PQRSTUVWXYZ‘

DCL &Srch3 *CHAR 3 ‘MNO’

DCL &Srch5 *CHAR 5 ‘MNO ’

DCL &StPos *UINT 2 13

%CHECK(&Srch3 &Str &StPos) = 16 (space)

%CHECK(&Srch5 &Str &13) = 17 (P) Spaces count!

%CHECK(&Srch3 &Str) = 1 (A)

%CHECK(‘MNO’ &Str 14) = 16

Returns last position of base string that contains a
character that does NOT appear in comparator string.

DCL &Str *CHAR 27 'ABCDEFGHIJKLMNO PQRSTUVWXYZ‘

DCL &Srch3 *CHAR 3 ‘MNO’

DCL &Srch5 *CHAR 5 ‘MNO ’

DCL &StPos *UINT 2 13

%CHECKR(&Srch3 &Str &StPos) = 12 (L)

%CHECKR(&Srch5 &Str) = 27 (Z)

%CHECKR(&Srch3 &Str) = 27 (Z)

%CHECKR(‘MNO’ &Str 16) = 12 (L)

Returns position in base string that contains first
character of comparator string.

DCL &Str *CHAR 27 'ABCDEFGHIJKLMNO PQRSTUVWXYZ‘

DCL &Srch3 *CHAR 3 ‘MNO’

DCL &Srch5 *CHAR 5 ‘MNO ’

DCL &StPos *UINT 2 13

%SCAN(&Srch3 &Str &StPos) = 13 (MNO)

%SCAN(&Srch5 &Str) = 0 (Not Found)

%SCAN(&Srch3 &Str) = 13 (MNO)

%SCAN(‘MNO’ &Str 14) = 0 (Not Found)

 %TRIM, %TRIMR, %TRIML
◦ Valid anywhere a text variable is valid.
◦ If any trim results in nothing, a full string of blanks is

returned.
◦ Second parm default is ‘ ‘ (spaces)

 %CHECK, %CHECKR, %SCAN
◦ Valid anywhere a numeric variable is valid.
◦ Starting Position is optional and defaults to 1.
◦ %TRIM/R/L NOT Valid inside %CHECK/ %SCAN
 %SCAN(%TRIM(&Srch) &Str &StPos) INVALID!

 All work in CL, CLLE, and CL Modules
 CAN Compile back to (but not ON):
◦ IBM i 6.1
◦ IBM i 5.4

 Convert to character format
%CHAR(convert-argument)
◦ The convert-argument must be a CL variable with TYPE

of *LGL, *DEC, *INT or *UINT.
◦ For logical data, the result will be ether '0' or '1'.

 Convert to Decimal format
%DEC(convert-argument [total-digits decimal-
places])
◦ The convert-argument must be a CL variable with TYPE

of *CHAR, *LGL, *DEC, *INT or *UINT.

 Convert to Integer Format
%INT(convert-argument)
◦ The convert-argument must be a CL variable with TYPE

of *CHAR, *LGL, *DEC or *UINT.

 Convert to Unsigned Integer
%UINT(convert-argument)
%UNS(convert-argument)
◦ The convert-argument must be a CL variable with TYPE

of *CHAR, *LGL, *DEC or *INT.

 Convert string to lower case.
%LOWER(input-string [CCSID])
◦ The input-string must be a CL variable with TYPE of

*CHAR.

 Convert string to upper case.
%UPPER(input-string [CCSID])
◦ The input-string must be a CL variable with TYPE of

*CHAR.

 Return Length of a variable

%LEN(variable-argument)
◦ The variable-argument must be a CL variable with

TYPE of *CHAR, *DEC, *INT or *UINT.

 Return the number of bytes occupied by the
CL Variable

%SIZE(variable-argument)
◦ The variable-argument must be a CL variable.

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 New BIFs
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 *CMD objects can now retrieve prompt text from
message members

 CMD definition enhanced.
◦ PROMPT parm can be text or MSGID
◦ If MSGID new PMTFILE parm determines where to look for

the message text.
 Additional *STATIC or *DYNAMIC parm determines if prompt

text lookup is done at compile time or run time.

*NOTE
 Beginning with IBM i 6.1 this capability is used for all

command objects
 The result of this is that from i 6.1 forward the

QSYS29nn libraries containing only language specific
commands were removed.
◦ Security improvement!!

 CMD definition to pull into the source many
parms which currently must be specified on the
CRTCMD
◦ MAXPOS(0-99 *NOMAX)
 Maximum Positional Parameters

◦ ALLOW(*INTERACT *BATCH …)
 Where allowed to Run

◦ MODE(*ALL *PROD …)
 Mode in which valid

 Pretty much all the parms from CRTCMD
 Tooo many to list here! (Press F4!)
◦ But NOT the command processing program! 

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 Verify Name.
◦ This API verifies an input value to determine if it is a valid

system name. (CPF019D means, NO!)

 Parms are:
◦ CHAR(*)Data
◦ CHAR(8) Format of data ‘VFYN0100’
◦ CHAR(*)Error.

 VFYN0100 contains (not a complete list)
◦ CCSID
◦ Case indicator (0=do not monocase, 1=monocase first)
◦ Name type (*NAME *SNAME *CNAME)
◦ Name to be verified.

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 Create a command in one library that references a
command in another library
◦ Proxy command has no parms it’s just a pointer: ‘He’s over

there’

 CRTPRXCMD, CHGPRXCMD used to create and
change them i.e.

CRTPRXCMD CMD(QGPL/SOMECMD)
TGTCMD(MYLIBRARY/MYCMD)
REPLACE(*NO)

 Proxy commands can be chained 5 levels
 Use of CHGCMD or CHGCMDDFT operates on the

end target command not the proxy.
◦ YOU HAVE BEEN WARNED. 

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

New GENCMDDOC command
 Run it Twice
◦ First create a shell PNLGRP source with:

GENCMDDOC CMD(YOURLIB/YOURCMD) GENOPT(*UIM)

 You must complete the generated PNLGRP with text

 Create the PNLGRP and assign to the command

 Rerun GENCMDDOC to make nice with the html

◦ Second run create HTML documentation for the
command
GENCMDDOC CMD(YOURLIB/YOURCMD) GENOPT(*HTML)

 Uses the command object (not source)

 Adds any UIM help (PNLGRP) text to the HTML

 Variable Types
 Parameter enhancements
 Multiple File Support
 Declare Processing Options
 Source member Include
 Control Flow Enhancements
 Subroutines
 Command Enhancements
 New API QCAVFYNM
 Proxy Command
 Command Documentation
 Future CL Enhancements

 Enhance CVTDAT to support larger year
range
◦ Current range is 1928 to 2071 (i 7.4)

 Compiler option to keep unreferenced CL
variables

 New or extended data types for CL variables
◦ *CHAR variables with LEN up to 16MB
◦ *DEC variables with LEN up to 31 digits

 Single-dimension arrays and array notation
syntax

 Support variable-length parameter list on
PGM

 Support 31-character CL variable names
◦ (Wanted by COBOL programmers )

 Support structures and structure field reference
notation

 Support RTNVAL parm on PGM command (ILE)
 Support “soft remove” of obsolete *CMD

parameters
 Increase MAX limit on PARM and ELEM
 Support conditional prompting for *PMTRQS parms
 Allow more types of command processing code:
◦ ILE procedure in a service program
◦ Java method in a .jar or .zip stream file

 Support *PTR for TYPE on PARM statement
 SQL pre-compiler

 Ship CL header includes in QSYSINC library
 Increase maximum length of a CL command

string
 GENCLSRC command (like GENCSRC)
◦ Generate CL for record format without

DCLF overhead
 Generate command processing program

from *CMD
 Relax command change exit program

restrictions
 Support longer object name syntax (OPM

and ILE)

 Listen to customers!

Rochester wants to deliver enhancements
that will delight IBM i customers, including
business partners

◦ If They're hitting the mark, tell an IBM
exec!

 Control Language in Knowledge Center:

www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_74/rbam6/clpro.htm

 The CL Language has moved forward SIGNIFICANTLY since 2004!
◦ Your coding should too.

 Use of the new Control flow enhancements enables MUCH more
readable code and enables the abolishment of the dreaded
GOTO!

 Source includes should help with standardizing code and
centralizing maintenance.

 Source in Stream Files enables use of repositories such as GIT
 Pointers combined with offsets and based variables can greatly

simplify processing of users spaces returned by APIs.
 Subroutines can greatly reduce the incidence of duplicated code

and improve reliability and maintainability.
 Many things cannot be done in CL and require CLLE (ILE) yet

nothing in CL cannot be done in CLLE.
◦ MOVE!

91

How to contact me:
Larry D Bolhuis
Frankeni Technology Consulting, LLC.
lbolhuis@frankeni.com
www.frankeni.com

1. Log on to Sched and go to your schedule

2. Click on the this session

3. Click on the feedback survey link above the session abstract

4. To fill out additional surveys go back to your schedule and click on the next session

