
Marina Schwenk

Software Developer

About Me
 Software Developer/IBM i admin at Everbrite LLC,

Greenfield WI

 Member of the CAAC. (COMMON America’s Advisory
Counsel)

 2019 IBM fresh face

 VP of WMCPA

 COMMON Board Member

 Member of COMMON’s Young i Professionals (YiPS)
committee

Agenda
 Scenario

 How to start

 Service programs

 Unit testing

 Standards

 Bring it all together

 Final thoughts and take aways

Scenario
 Your monolithic program is over 30+ years old

 The code is unmanageable

 No one wants to own the program

 You don’t know where to begin.

How to start
 Document Business process

 Design

 Modernize

 Develop a plan

 Executive the plan.

Document Business Process
 Document current business processes

 Meet with different departments to confirm business
processes

 Document your findings.

Design
 Identify procedures that are needed

 Plan the procedures inputs and outputs

 Design the flow of how the procedures are going to be
used.

Develop a plan
 Decide your approach

 Plan the timeline

 Start the project

Modernize Code
 Remove redundancy

 Develop a clear plan on data retrieval that ensures long
term success

 Remove outdated code

Service Programs
 Service Program (*SRVPGM) can be viewed as a

collection of subroutines packaged together and
accessible to the outside world.

 Service programs can be thought of like classes, in the
open source world.

Service Programs
 Carrying out a routine function.

 External procedures that can be called from other
programs.

 You can add/change procedures as needed.

Service Programs
 Single code base.

 Easy to use and reuse.

 The ability to add to the service program without
recompiling programs that are using it.

Service Programs
Service programs required objects

*BND

*SRVPGM

Optional

*MOD

Service Programs
 Service programs required source

 Copy file _h

 RPGLE or SQLRPGLE source file.

 Binding source

Copy File
 **free

 dcl-pr getArTransactionId varChar(20);

 releaseNumber packed(7) const;

 releaseSequenceNumber packed(5) const;

 end-pr;

Service Program – Start
 **FREE

 ctl-opt bnddir('EVBLOG’ : 'TEXTUTILS');

 ctl-opt nomain;

Procedure
 dcl-proc getArTransactionId export;

 dcl-pi *n varChar(20);
 releaseNumber packed(7) const;
 releaseSequenceNumber packed(5) const;
 end-pi;

 dcl-c PROCEDURE_NAME 'getArTransactionId';

 dcl-s result varChar(20);
 dcl-s customerRelease char(20);
 dcl-s customerReleaseNull int(5);
 dcl-s projectId packed(7);
 dcl-s projectIdNull int(5);

 evblog_entering(RELEASE_APPNAME : psds.PROGRAM_NAME : PROCEDURE_NAME
 : 'releaseNumber=' + %char(releaseNumber) +
 ', releaseSequenceNumber=' + %char(releaseSequenceNumber));

 result = '';

 - Continue on next slide

Procedure continued
 exec sql
 select rh.cusrl, rx.prjid
 into :customerRelease:customerReleaseNull, :projectId:projectIdNull
 from rlshdr rh left join rlshdx rx
 on rh.rlsno = rx.rlsno and rh.rlssq = rx.rlssq
 where rh.rlsno = :releaseNumber
 and rh.rlssq = :releaseSequenceNumber;

 if (isSQLError(sqlstt));

 if (not isSQLRowNotFound(sqlstt));

 evblog_log(RELEASE_APPNAME
 : psds.PROGRAM_NAME
 : PROCEDURE_NAME
 : EVBLOG_WARNING
 : 'SQL Error'
 : getSQLStateMessage());

 endIf;
 Continue on Next slide

Procedure continued
 else;

 // information was returned

 if ((projectIdNull = SQL_NOT_NULL) and (projectId <> 0));
 result = 'P' + %char(projectId);
 elseIf (customerReleaseNull = SQL_NOT_NULL);
 result = %trim(customerRelease);
 endIf;

 endIf;

 evblog_exiting(RELEASE_APPNAME : psds.PROGRAM_NAME : PROCEDURE_NAME
 : result);

 return result;

 end-proc;

What is Unit Testing?
 Breaking apart your application and testing each part

 It’s a program that will call your production
program/procedure.

 Test its behavior and/or output.

 Separate pieces that gets tested before the final program
is completed.

Why Unit Test?
 Peace of mind.

 Good for program modification's.

 Good for defining what your program needs to do, before
you write the program.

 Test cases will build over time.

Why Unit Test?
 Improved Code.

 Validates existing behavior.

What is IBMiUnit?
 RPG open source unit testing framework

 Streamlines unit testing of RPGLE programs and
procedures

How to Use IBMiUnit
 Install IBMiUnit Library

 Create test program

 Write one or more tests

 Run the tests

Installation
 Go to https://github.com/MarinaSchwenk/IBMiUnit

 1st way…

 Download the REPO

 Run the Build file

 2nd way…

 Download the savf file to IFS

 Create library IBMiUnit

 Restore IBMiUnit library.

https://github.com/MarinaSchwenk/IBMiUnit

Dependencies
 OSSILE (Soon to be obsoleted)

 Go to https://github.com/OSSILE/OSSILE

 Download the repo

 Follow the build instructions listed on the project.

https://github.com/OSSILE/OSSILE

Create Test Program
 No parameters

 bndDir('IBMiUnit')

 /copy IBMiUnit/QRPGLESRC,IBMiUnit_H

 Main body of the program

 Call IBMiUnit_setupSuite() (one-time)

 Call IBMiUnit_addTestCase() (for each test case)

 Call IBMiUnit_teardownSuite() (one-time)

 return

IBMiUnit Initialization
 IBMiUnit_setupSuite()
 Initializes the IBMiUnit library to run tests in the program
 Parameters (all optional)

 Name for the test suite
 Address of sub-procedure to call before each test
 Address of sub-procedure to call after each test
 Address of sub-procedure to call once before any tests in the

program are called
 Address of sub-procedure to call once after all tests in the

program are completed

 Example
IBMiUnit_setupSuite('MathTests');

IBMiUnit Test Case
 IBMiUnit_addTestCase()

 Identifies or ‘links’ a test case into the suite

 Parameters (no return value)

 Address of a test case sub-procedure

 No parameters or return values

 Name of test case; optional but greatly helps you
understand the test output and find the problem

 Example

IBMiUnit_test(%pAddr(add_twoNumbers)

: 'add_twoNumbers');

IBMiUnit Test Suite
 IBMiUnit_addTestSuite()

 Adds a set of test cases (suite) to a parent set

 Not all test programs will use this

 Parameters

 Name of test program

 Library of test program

 Optional, defaults to *LIBL

 Example
IBMiUnit_addTestSuite('TEST_ACHAR');

IBMiUnit Teardown
 IBMiUnit_teardownSuite()

 Wraps up test suite

 No parameters

 Every IBMiUnit_setupSuite() needs a
corresponding IBMiUnit_teardownSuite()

 Example

IBMiUnit_teardownSuite();

Write a Test Case: Interface
 Sub-procedure without parameters or a return value

 Name the test case with the name of the sub-procedure

 Example

 Calling the sub-procedure with positive values

 Test case named multiply_twoPositives

 Other test case names: multiply_positiveByZero,
multiply_zeroByZero, multiply_twoNegatives, …

Write Test Case: Logic
 Call sub-procedure with test data

 Compare actual result with the expected result

 Trigger failure when they don’t (or do) match

Write Test Case: Failure Detection
 Always fail, i.e. you write the condition and call fail()

 Conditionally fail, or test for failure; many possibilities
 All start with assert

 Indicator tests
 On / Off

 Pointer tests
 Null / NotNull

 Variable tests / comparisons
 RPG doesn’t have overloading so next word is a type

 Char, Date (ISO), Float, Numeric, Time (ISO), Timestamp

 Character tests work on values up to a length of 250

 Numeric is used for non-float numbers; size is 60,25

Write Test Case: Test Procs
 fail()

 Message to display; optional

 assertOn(), assertOff(), assertNull(), assertNotNull()
 Actual value; required
 Message to display on failure; optional

 assertFloatXxx()

 Expected value; required
 Actual value; required
 Delta (leeway; allowable difference); required
 Message to display on failure; optional

 assertXxx() (everything else)
 Expected value; required
 Actual value; required
 Message to display on failure; optional

Write Test Case: Examples
if (%scan('TEST' : value) <> 1);

fail('value does not start with TEST');

endIf;

assertOn(rowFound, 'Row not found');

assertCharEquals(expected, actual, 'Name');

assertNumericEquals(12.00, extendedAmount, 'Item price');

assertDateEquals(today, invoiceDate, 'Invoice date');

Run Tests
 Call IBMiUnit command.

 Example

 IBMiUnit/RUNTEST SUITE(TEXTUTIL_T)

UI(*DSPLY)

 No feedback if all tests are successful

 Helps you focus on the problems

Result Status
 Successful

 Failure

 A state detected by your code

 From fail() or assertXxx()

 Error

 A problem encountered, but not detected, by your code

 Level check, divide by 0, array index out of bounds, …

Standards
 Keep test code separate from production code.

 Keep Service programs clean

 Don’t hard code.

 Keep comments clear and concise

 Keep code consistent.

 Keep Naming conventions the same

 Orders Service Program = Orders_T Testing program.

Bring it all together
 Old code has been modernized and brought into a service

program.

 Created new methods and new program to call the
methods.

 Created testing program to test new methods.

 Replace the calling programs with a call to the method or
the new program.

Demo Time!

Add IBMiUnit library

Run IBMiUnit interactive

Final Thoughts..
 Service programs are very easy to adopt.

 By having service programs you can easily incorporate
unit testing.

 It’s a process to modernize, its worth it in the end.

Thank you!!
My contact Info

Marina Schwenk

 marinaschwenk23@gmail.com

 @marinaschwenk26 on twitter

mailto:marinaschwenk23@gmail.com

