OO and Ahh!

An Introduction to Object Oriented Programming With PHP

John Valance
division 1 systems
johnv@divlsys.com

division 1 systems

© 2015 John Valance

About John Valance

>

Independent Consultant
a Founder and CTO of Division 1 Systems (divlsys.com)

a Specialty is helping IBM shops develop web applications and
related skills

a Training, mentoring, project management, consultation and
coding

30+ years IBM midrange experience (S/38 thru IBM i)
13+ years of web development experience

a Web scripting language of choice = PHP
Frequent presenter on web development topics

Trainer for Zend Technologies
o Teaches Intro to PHP for RPG programmers
o Zend Certified Engineer

OO and Ahh! Object Oriented PHP

divl

Goals and Topics of This Presentation

> Goals:

a Introduce Object Oriented programming concepts and
basic OO syntax for PHP

a Focus on basics — avoid advanced OO concepts

> Topics:
a Review of PHP functions — concepts and syntax

a Basic concepts, keywords and syntax
e Defining classes and instantiating objects

a Examples
* Person class
e HTML form input class

OO and Ahh! Object Oriented PHP divl

Assumptions

> You:
a Understand basic PHP syntax
a Understand PHP functions
a Understand basics of web programming in PHP
a Some experience with HTML forms and PHP
a Interested in Object-Oriented PHP
a May have no prior experience with OO

* maybe you’ve tried it, but got lost or overwhelmed

OO and Ahh! Object Oriented PHP divl

Review of PHP Functions

> Functions have several important properties that set them
apart from RPG subroutines
o Parameters = input
o Return value = output
o Local variables i.e., scope

> Functions are defined with function keyword

function formatDate($dateString, S$format = 'M d, Y')
{
SdateVar = strtotime ($dateString);
sfmtDate = date($format, S$dateVar);
return $fmtDate;

[T 5 B i A O AN

-]

}

// Mainline
echo formatDate('2011-09-27"); // "Si
echo formatDate('2011-09-27', 'm/d/y

oo

p 27, 2011"
); // "09/27/11"

- (D

[
=

OO and Ahh! Object Oriented PHP divl

Anatomy of formatDate () function

> Two parameters, passed by VALUE (i.e. copy)
> Sformat has default value (optional parameter)

> SdateString, $format, $datevar, and
SfmtDate are all LOCAL variables

(i.e., not accesible outside formatDate function)

-function formatDate($dateString, $format = 'M d, Y')
{

$datevVar = strtotime ($dateString);

SfmtDate = date($format, s$dateVar);

return $fmtDate;

S I T 5 Y S T

}

// Mainline

echo formatDate{*2011-09-27"); #/ "Sep 27, 2011"

echo formatDate('2011-09-27', 'm/d/y'): // "09/27/11"

=1 AR

|_'.
=

OO and Ahh! Object Oriented PHP divl

Functions are Reusable

> Function = Black-Box
a Pre-tested component

o Well-defined interface (API)
a Can be relied upon as building block

> Can create function libraries and include them in
multiple scripts

a Use require_once(‘func_lib.php’);

OO and Ahh! Object Oriented PHP divl

Why Objects?

Why not just use functions, and organize them into
libraries?

> Objects take the concepts of functions a step
further (a big step).

> Objects allow you to organize your functions into
groups that share a common set of data elements

Encapsulation:

> Data and Related Functions are tied together

OO0 and Ahh! Object Oriented PHP divl

What is a Class?

> A class is a template for creating objects

> Defines:
a a set of related data elements

o a set of functions that perform actions on this
data

> Data elements are called “Properties”
a these are PHP variables

> Actions are called “Methods”
a these are PHP functions

OO and Ahh! Object Oriented PHP

divl

Person class

1 <?php

Z-g¢lass Person ¢

3 // Data Elements (i.e.: properties)

4 public $firstName;

5 public $lastName;

6

z // Functions (l.e.: methods)

ge public function construct($first, S$last) {
9 Sthis—>firstName = Sfirst;

10 Sthis—->lastName = S5last;

11 }

12

13e public function getFullName () {

14 SfullName = $this->firstName . ' " . 5this->lastName;
15 return S5fullName;

16 }

17

18e public function sayHello() {

it echo "Hello, my name is " . Sthis->getFullName ()
20 }

21 |}

OO and Ahh! Object Oriented PHP divl

Defining a Class

> Use class keyword, followed by name of the class

> Body of class:
a curly braces { } enclose entire class definition
a Properties (variables)
a Methods (functions)

> Properties usually coded at top, before methods

class ClassName {
// properties..

// methods..

OO and Ahh! Object Oriented PHP divl

Class Names

> Class name should be a noun

a represents an object of some sort that we are
attempting to model

> Standard is to start with capital letter

a use mixed case or underscores to separate
multiple words in class hame.

> Some examples of classes you might create:

a Customer, Order, Product, HTML InputForm,
DB2 Connection, ErrorLog, etc.

OO and Ahh! Object Oriented PHP divl

Basic OO Design

> Anything that can be boiled down to
a a set of properties (variables)

a and actions (functions) that can be performed on the
properties

can be modeled as an object class.

> Typically code each class in a separate PHP file
a Use same name as class for file name: Person.php

> Include class def into applications
a use require_once() function

OO and Ahh! Object Oriented PHP

divl

Using Classes in Applications

CREATING AN OO APPLICATION

Instantiating Objects

> Class definitions are just template

a by themselves won't accomplish anything or run any
code.

> Need to create an object instance to use them
> Use the “new” keyword, followed by Class name
> Assign this to an object variable

Sbob = new Person;
Stom = new Person;

> Each object has its own set of properties

OO and Ahh! Object Oriented PHP

divl

Person class again

1 <?php
Z-g¢lass Person ¢

3 // Data Elements (i.e.: properties)

4 public $firstName;

5 public $lastName;

6

7 // Functions (i.e.: methods)

ge public function construct($first, S$last) {

9 Sthis->firstName = Sfirst:

10 Sthis->lastName = Slast;

11 }

12

13e public function getFullName () {

14 SfullName = $this->firstName . " ' . Sthis->lastName;
5 return 5fullName;

16 }

17

18e public function sayHello() {

it echo "Hello, my name is " . Sthis->getFullName ()
20 }

21 |}

OO and Ahh! Object Oriented PHP

divl

Application using Person class

7| personépp.php)
1 <?php
require once 'Person.php':;

1= T R R]

l"‘

Sbob = new Person('Bob', 'Smith');
Stom = new Person('Tom', 'Jones');

SbobsName = Sbhob->getFullName () ;
echo "Bob's full name is ShobsName
";

Stom->sayHello() ;

If your run this script in a browser, it will produce the following output:

Bob's full name I1s Bob Smith
Hello, my name is Tom Jones

OO and Ahh! Object Oriented PHP

divl

Class vs. Object

> Similar to the relationship between a File Description
and a Record

a Class is like a DB File Layout

* Except a Class also defines functions that can act upon the data.

a Object s like a record in the file
* Asingle “instance” of the data

> DB anology ends there
a no database is involved
a objects are in memory while script executes

> Each object has its own set of variables

> Each object is an “instance” of the class
a Instantiation is done with the “new” keyword

OO and Ahh! Object Oriented PHP

divl

Object Member Access: ->

> Properties and Methods are “Members” of
the class
> Access to object members done with “->”

o object member access operator

o aka, arrow operator

echo 'First name: ' . Sbob—->firstName:;
Stom->sayHello() ;

> Note: from outside the class definition, can
only access public members.

OO and Ahh! Object Oriented PHP

divl

Using Sthis Within a Class

> From within class definition, accessing
properties and methods of the same class is
done using Sthis

> Sthis is a special object name

a can only be used inside class methods (not from
application code)

a refers the current instance of the class, based on
context in which method was called

OO and Ahh! Object Oriented PHP divl

Example of Sthis - In Context

> Application context (Stom object):

StomsName = Stom->getFullName () ;

> Class context (Sthis object):

public function getPFullName () {
SfullName = S$this—>firstName.' '.5this—>lastName;
return SfullName;

}

> When getFullName () called on Stom object,
Sthis refers to Stom’s data

OO0 and Ahh! Object Oriented PHP divl

Constructors

> When object instantiated, special method
called _ construct() is called automatically

a 2 underscores before construct in the name

> In OO0 languages, this is called a constructor
method.

> Performs object initialization tasks
o like RPG’s *INZSR subroutine

» Optional — don’t have to code construct()

OO0 and Ahh! Object Oriented PHP divl

Constructor Example

public function construct(S$first, Slast) {

Sthis->firstName = Sfirst;
Sthis—->lastName = S$last;

J

> Constructor can be coded with parameters

a e.g., to set property values

Sbob = new Person('Bob', '"Smith');
Stom = new Person('Tom', 'Jones'):;

OO and Ahh! Object Oriented PHP divl

Member Visibility: public vs. private

> Every class member (property/method) should
specify the "visibility"
> public visibility:

a member can be directly accessed from any context,
inside or outside the class definition

> private visibility:

a member can only be directly accessed from the
methods within the same

» Default (implicit) visibility is public

a but you should explicitly specify visibility for each
member

OO and Ahh! Object Oriented PHP

divl

Person class — one more time

1 <?php

Z-g¢lass Person ¢

3 // Data Elements (i.e.: properties)

4 public $firstName;

5 public $lastName;

6

z // Functions (l.e.: methods)

ge public function construct($first, S$last) {
9 Sthis—>firstName = Sfirst;

10 Sthis—->lastName = S5last;

11 }

12

13e public function getFullName () {

14 SfullName = $this->firstName . ' " . 5this->lastName;
15 return S5fullName;

16 }

17

ge public function sayHello() {

9 echo "Hello, my name is " . Sthis->getFullName ()
20 }

21 |}

OO and Ahh! Object Oriented PHP divl

Getters and Setters

> Public properties are considered bad form
a If public, you can retrieve and modify values
a Public ties you to a specific implementation

> Best practice:
a make all properties private

a declare public getter and setter methods to access
properties

> Aka — “accessor” methods

a controls access to object data

OO and Ahh! Object Oriented PHP divl

Benefits of Accessor Methods

> Setters: Add filtering and error checking on values
before allowing data elements to be set.

a setFirstName() method could check for a maximum length

a throw an error if the value supplied for firstName will not
fit into a database field.

> Getters: Format data value for consumption by a
variety of applications before being retrieved.

a getFirstNameForWeb() could filter value using PHP’s
htmlentities() function, preventing XSS attacks.

> Can simulate read-only properties
a Property has public getter, but no public setter

> Abstracts the Interface from Implementation
a Changes to the implementation do not affect applications

OO and Ahh! Object Oriented PHP divl

Person Class — Private Properties

c¢lass Person
private SfirstName;
private $lastName;

public function construct($first, $last) {
Sthis—>setFirstName (Sfirst);
Sthis->setLastName ($1last) ;
}
public function setFirstName ($first) {
if (Sthis->checkFirstName (Sfirst)) {
Sthis->firstName = Sfirst;
return true;
1

}
public function getFirstName () {

return htmlentities (Sthis->firstName) ;
1
private function checkFirstName ($first) {
if [(strlen (SEirst)} = 403 |
throw new Exception('firstName exceeds 40 characters'):
} else {
return true;

}

Error Handling in OO Code

private function checkFirstName(Sfirst) |
if (strilemn [SEirst } =40} |
throw new Exception('firstName exceeds 40 characters');
} else {
return true;

}
}

> We don’t know in which context an object will be used
> In class, if error occurs, throw an Exception

> It will bubble up through call stack until caught

> Allows application code to handle error appropriately

> Uncaught exceptions will cause fatal error, and produce
ugly stack trace on web page.

OO0 and Ahh! Object Oriented PHP divl

Try / Catch Blocks

try {
// try block: i.e., code accessing
// objects which may throw exception
} catch (Exception S$Se) {
// catch block: i.e., code to execute

// if exception thrown in try block
}

personApp.php, revised:

try {
Stom->setFirstName (' Thomas') ;
} catch (Exception Se) {

echo "An error occurred as follows: " . Se->getMessage():
echo "
Stack Trace:
" . Se->getTraceAsString():

OO and Ahh! Object Oriented PHP

divl

Exception Class
http://www.php.net/manual/en/class.exception.php

> Exception is a PHP built-in class

throw new Exception('firstName exceeds 40 characters');

> This instantiates an unreferenced object of type
Exception

catch (Exception $e)

> This receives the thrown Exception object, and assigns it
to a variable named Se

> We can now access the public members of the Exception
object via the variable Se

echo "Error occurred: " . Se->getMessage():

OO0 and Ahh! Object Oriented PHP divl

Example: Form Input class

> Create a Class to:
o store the properties of an HTML form input field
o render the HTML for the <input> tag, in a variety of formats

> Properties:
o nhame (attribute of <input> tag)
a type (attribute of <input> tag)
o Vvalue (attribute of <input> tag)
o text label (to display next to the input field)
o output only? (boolean: true = protect input)

> Methods:
a constructor (parms: name -req’d.; type - optional, default="text’)
o setters/getters for private properties
o render (returns HTML <input> tag with all attributes)
o renderTableRow (returns an HTML <tr> with columns for label and <input>)

OO and Ahh! Object Oriented PHP divl

PHP code for Form Input class

<?php

class Form Input {

private Sname;

protected Stype;

public Svalue = '';

public $label = '';

protected SisOutputOnly = false; // boolean

public function construct($name, Stype='text') {
Sthis->name = Sname;
Sthis->type = Stype:;

}

public function setType(Stype) {
Sthis->type = Stype;
}

public function setOutputOnly () {
Sthis->isOutputOnly = true:;
}

OO and Ahh! Object Oriented PHP

divl

Form Input class (cont'd.)

public function render () {
$html = "<input type='"{Sthis->typel}’
name="'{5this—->name}"

value='{5this->value}' ";
if ($this->isOutputOnly) {
Shtml .= ' disabled="disabled" °

¥ glass="output-only™ "i

j
shiml o= % f2%;
return Shtml;
J
public function renderTableRow() {

Shtml =
TELES
<td align="right' style="vertical-align:top'>
{$this->1abel} :;
<ftd>
<td align="left' style='vertical-align:top'>
{Sthis->render /() }
</td>
<ftr>";

return Shtml;

Application using Form Input - PHP

require once 'Form Input.php':

SinpCustNumber = new Form Input("CUNUM');
SinpCustNumber->label = "Customer Number':
SinpCustNumber->value = 61325;
SinpCustNumber->setoutputonly () ;

SilnpCustName = new Form Input ("CUNAME');
SinpCustName->1abel = 'Customer Name':
SinpCustName->value = 'Acme Welding';

SinpIsBizCust = new Form Input('CUBUSINESS', 'checkbox'):
SinpIsBizCust->label = 'Business account??';

// Page to return to after form processing
Scaller = new Form Input{'caller’, 'hidden"):
Gcaller-»value = 5 SERVER['HTTP REFERER'];

Ssubmit = new Form Input('saveButton', Tsubmit'):;
Ssubmit-»>value = 'Save Changes':

OO and Ahh! Object Oriented PHP

divl

Application using Form Input - HTML

<html>
<head>
<link rel="stylesgheet" type="text, /css" href="styvles.css" />
</ head>
<body>
<form:>
<?php echo 5caller->render(); 2=
<table border=0 width="50%">
<caption>Customer Information</caption>
<?php
echo 5inpCustNumber->renderTableRow () ;
echo SinpCustName->renderTableRow() ;
echo 5inpIsBizCust->renderTableRow()
echo Ssubmit->renderTableRow();
7>
eiEables
</ form>
</ body=>
<ihtml>

OO and Ahh! Object Oriented PHP divl

Customer Input Form — Rendered in FF

@ Mozilla Firefox

|| http://192.168.15.1...rminputsAppCtrl.php | + _

Customer Information

Customer Number - 61325
Customer Name . Acme Welding
Business account? : [}

: I Save Changes

OO0 and Ahh! Object Oriented PHP divl

IBM i Toolkit

- Toolkit has two components
XML Service

* Created by IBM to provision IBM i resources for other
platform development
 Written in RPG, CL and DB2 stored procedures

PHP classes that “wrap” payload of XML Service
e Built on an Object Oriented model of PHP

* Use of PHP objects does not require OO knowledge
(black box)

OO and Ahh! Object Oriented PHP divl

Using the IBM i Toolkit

39

Need to include the source code (i.e., class definitions) for
the toolkit

Two class files exist:
a ToolkitService.php

* Run CL commands

e Call IBMiprograms (RPG, CL, etc. —any *PGM object)
a iToolkitService.php

* Access to native IBM i objects

* Spool files, Data queues, User spaces, System Values, Job Logs, Object
Lists

Use require_once to access Toolkit Classes:

* require once 'ToolkitService.php';

* require once 'iToolkitService.php';
Documentation is in the Zend Server for IBM i User Guide:

http://files.zend.com/help/Zend-Server-6-IBMi/zend-server.htm#tiphp toolkit xml service functions.htm

OO and Ahh! Object Oriented PHP

divl

Running CL Commands from PHP

* Create the toolkit object using the singleton design pattern

require once 'ToolkitService.php';

try {
$tkOb]j = ToolkitService::getInstance('*LOCAL', 'PHPUSER', 'phppswdl'):;
} catch (Exception %$e) {
echo Se->getMessage(), "\n";
exit ()

}

// Send a message
Scmd = "SNDMSG TOUSR (JVALANCE) MSG('Hi1i there, John!')"™;
StkObj->CLCommand ($cmd) ;

// Change job logging

Scmd = "CHGJOB LOG(4 (00 *SECLVL) LOGCLPGM(*YES)"™;
StkObj->CLCommand ($cmd) ;

* In ToolkitService class, the getlnstance method returns an object

 Cannotuse new ToolkitService with singleton class

40 OO and Ahh! Object Oriented PHP divl

Examples:
CLIinteractiveCommand() and CICommandWithOutput()

> CLInteractiveCommand:

41

Srows = $tkObj->CLInteractiveCommand ("DSPLIBL");
if(!is array(Srows})
echo $tkObj->getLastError():
else |
echo "<h2>DSPLIBL output:</h2>";
foreach (Srows as Srow)
echo "Srow
";

1

CLCommandWithOutput:

$joba = $tkObj->ClCommandWithoutput ("RTVJOBA job(?) user(?) nbr(?)"):;
if(!5joba) {

echo $tkObj->getLastError():
} else |

echo "Job is: {$jobal'job'l}/{$jobal['user']l}/{$jobal'nbr']}
";
1

OO and Ahh! Object Oriented PHP

divi

Thanks for attending!

SUMMARY...

Summary

> OO = encapsulation of data and related functionality
> Class definitions

o templates for instantiating objects,
o each object has its own data space.

> Object Instantiation

o new keyword

> Object member access operator (->)
» Sthis : access internal members within a class

> Applications: bring class definitions in using
require_once()

OO0 and Ahh! Object Oriented PHP divl

Summary (cont’d.)

> Member visibility - public and private

o publicis default
o private is better

> Getter and Setter methods
a control access to object’s data

> Constructor method (__construct)
a object initialization
> Exception handling,

a PHP's built-in class: Exception
o throw new Exception
a try/ catch

OO and Ahh! Object Oriented PHP

divl

More Information

> iPro Developer article on OO PHP
by John Valance:

a http://tinyurl.com/oophp-JV1
a April 2013 issue

> PHP.net:
a http://php.net/manual/en/language.oop5.php
2 www.php.net/manual/en/class.exception.php

> Contact John Valance :

a2 johnv@divlsys.com
o 802-355-4024
o http://www.divlsys.com

OO0 and Ahh! Object Oriented PHP divl

