
OO and Ahh!
An Introduction to Object Oriented Programming With PHP

John Valance
division 1 systems

johnv@div1sys.com

© 2015 John Valance

OO and Ahh! Object Oriented PHP <div1>

About John Valance

 Independent Consultant
 Founder and CTO of Division 1 Systems (div1sys.com)
 Specialty is helping IBM shops develop web applications and

related skills
 Training, mentoring, project management, consultation and

coding
 30+ years IBM midrange experience (S/38 thru IBM i)
 13+ years of web development experience

 Web scripting language of choice = PHP
 Frequent presenter on web development topics
 Trainer for Zend Technologies

 Teaches Intro to PHP for RPG programmers
 Zend Certified Engineer

OO and Ahh! Object Oriented PHP <div1>

Goals and Topics of This Presentation

 Goals:
 Introduce Object Oriented programming concepts and

basic OO syntax for PHP
 Focus on basics – avoid advanced OO concepts

 Topics:
 Review of PHP functions – concepts and syntax
 Basic concepts, keywords and syntax

• Defining classes and instantiating objects
 Examples

• Person class
• HTML form input class

OO and Ahh! Object Oriented PHP <div1>

Assumptions

 You:
 Understand basic PHP syntax
 Understand PHP functions
 Understand basics of web programming in PHP
 Some experience with HTML forms and PHP
 Interested in Object-Oriented PHP
 May have no prior experience with OO

• maybe you’ve tried it, but got lost or overwhelmed

OO and Ahh! Object Oriented PHP <div1>

Review of PHP Functions
 Functions have several important properties that set them

apart from RPG subroutines
 Parameters = input
 Return value = output
 Local variables i.e., scope

 Functions are defined with function keyword

OO and Ahh! Object Oriented PHP <div1>

Anatomy of formatDate() function

 Two parameters, passed by VALUE (i.e. copy)
 $format has default value (optional parameter)
 $dateString, $format, $dateVar, and
$fmtDate are all LOCAL variables
(i.e., not accesible outside formatDate function)

OO and Ahh! Object Oriented PHP <div1>

Functions are Reusable

 Function = Black-Box
 Pre-tested component
 Well-defined interface (API)
 Can be relied upon as building block

 Can create function libraries and include them in
multiple scripts
 Use require_once(‘func_lib.php’);

OO and Ahh! Object Oriented PHP <div1>

Why Objects?

Why not just use functions, and organize them into
libraries?
 Objects take the concepts of functions a step

further (a big step).
 Objects allow you to organize your functions into

groups that share a common set of data elements

Encapsulation:
 Data and Related Functions are tied together

OO and Ahh! Object Oriented PHP <div1>

What is a Class?

 A class is a template for creating objects
 Defines:

 a set of related data elements
 a set of functions that perform actions on this

data
 Data elements are called “Properties”

 these are PHP variables
 Actions are called “Methods”

 these are PHP functions

OO and Ahh! Object Oriented PHP <div1>

Person class

OO and Ahh! Object Oriented PHP <div1>

Defining a Class

 Use class keyword, followed by name of the class
 Body of class:

 curly braces { } enclose entire class definition
 Properties (variables)
 Methods (functions)

 Properties usually coded at top, before methods

class ClassName {
// properties…

// methods…
}

OO and Ahh! Object Oriented PHP <div1>

Class Names

 Class name should be a noun
 represents an object of some sort that we are

attempting to model

 Standard is to start with capital letter
 use mixed case or underscores to separate

multiple words in class name.

 Some examples of classes you might create:
 Customer, Order, Product, HTML_InputForm,

DB2_Connection, ErrorLog, etc.

OO and Ahh! Object Oriented PHP <div1>

Basic OO Design

 Anything that can be boiled down to
 a set of properties (variables)
 and actions (functions) that can be performed on the

properties
can be modeled as an object class.

 Typically code each class in a separate PHP file
 Use same name as class for file name: Person.php

 Include class def into applications
 use require_once() function

CREATING AN OO APPLICATION

Using Classes in Applications

OO and Ahh! Object Oriented PHP <div1>

Instantiating Objects

 Class definitions are just template
 by themselves won't accomplish anything or run any

code.
 Need to create an object instance to use them
 Use the “new” keyword, followed by Class name
 Assign this to an object variable

 Each object has its own set of properties

$bob = new Person;
$tom = new Person;

OO and Ahh! Object Oriented PHP <div1>

Person class again

OO and Ahh! Object Oriented PHP <div1>

Application using Person class

If your run this script in a browser, it will produce the following output:

OO and Ahh! Object Oriented PHP <div1>

Class vs. Object

 Similar to the relationship between a File Description
and a Record
 Class is like a DB File Layout

• Except a Class also defines functions that can act upon the data.

 Object is like a record in the file
• A single “instance” of the data

 DB anology ends there
 no database is involved
 objects are in memory while script executes

 Each object has its own set of variables
 Each object is an “instance” of the class

 Instantiation is done with the “new” keyword

OO and Ahh! Object Oriented PHP <div1>

Object Member Access: ->

 Properties and Methods are “Members” of
the class

 Access to object members done with “->”
 object member access operator
 aka, arrow operator

 Note: from outside the class definition, can
only access public members.

OO and Ahh! Object Oriented PHP <div1>

Using $this Within a Class

 From within class definition, accessing
properties and methods of the same class is
done using $this

 $this is a special object name
 can only be used inside class methods (not from

application code)
 refers the current instance of the class, based on

context in which method was called

OO and Ahh! Object Oriented PHP <div1>

Example of $this - In Context

 Application context ($tom object):

 Class context ($this object):

 When getFullName() called on $tom object,
$this refers to $tom’s data

OO and Ahh! Object Oriented PHP <div1>

Constructors

 When object instantiated, special method
called __construct() is called automatically
 2 underscores before construct in the name

 In OO languages, this is called a constructor
method.

 Performs object initialization tasks
 like RPG’s *INZSR subroutine

 Optional – don’t have to code __construct()

OO and Ahh! Object Oriented PHP <div1>

Constructor Example

 Constructor can be coded with parameters
 e.g., to set property values

OO and Ahh! Object Oriented PHP <div1>

Member Visibility: public vs. private

 Every class member (property/method) should
specify the "visibility"

 public visibility:
 member can be directly accessed from any context,

inside or outside the class definition
 private visibility:

 member can only be directly accessed from the
methods within the same

 Default (implicit) visibility is public
 but you should explicitly specify visibility for each

member

OO and Ahh! Object Oriented PHP <div1>

Person class – one more time

OO and Ahh! Object Oriented PHP <div1>

Getters and Setters

 Public properties are considered bad form
 If public, you can retrieve and modify values
 Public ties you to a specific implementation

 Best practice:
 make all properties private
 declare public getter and setter methods to access

properties

 Aka – “accessor” methods
 controls access to object data

OO and Ahh! Object Oriented PHP <div1>

Benefits of Accessor Methods
 Setters: Add filtering and error checking on values

before allowing data elements to be set.
 setFirstName() method could check for a maximum length
 throw an error if the value supplied for firstName will not

fit into a database field.
 Getters: Format data value for consumption by a

variety of applications before being retrieved.
 getFirstNameForWeb() could filter value using PHP’s

htmlentities() function, preventing XSS attacks.
 Can simulate read-only properties

 Property has public getter, but no public setter
 Abstracts the Interface from Implementation

 Changes to the implementation do not affect applications

Person Class – Private Properties

28

OO and Ahh! Object Oriented PHP <div1>

Error Handling in OO Code

 We don’t know in which context an object will be used
 In class, if error occurs, throw an Exception
 It will bubble up through call stack until caught
 Allows application code to handle error appropriately
 Uncaught exceptions will cause fatal error, and produce

ugly stack trace on web page.

OO and Ahh! Object Oriented PHP <div1>

Try / Catch Blocks
try {

// try block: i.e., code accessing

// objects which may throw exception

} catch (Exception $e) {

// catch block: i.e., code to execute

// if exception thrown in try block

}

personApp.php, revised:

OO and Ahh! Object Oriented PHP <div1>

Exception Class
http://www.php.net/manual/en/class.exception.php

 Exception is a PHP built-in class

 This instantiates an unreferenced object of type
Exception

 This receives the thrown Exception object, and assigns it
to a variable named $e

 We can now access the public members of the Exception
object via the variable $e

OO and Ahh! Object Oriented PHP <div1>

Example: Form_Input class
 Create a Class to:

 store the properties of an HTML form input field
 render the HTML for the <input> tag, in a variety of formats

 Properties:
 name (attribute of <input> tag)
 type (attribute of <input> tag)
 value (attribute of <input> tag)
 text label (to display next to the input field)
 output only? (boolean: true = protect input)

 Methods:
 constructor (parms: name - req’d.; type - optional, default=‘text’)
 setters/getters for private properties
 render (returns HTML <input> tag with all attributes)
 renderTableRow (returns an HTML <tr> with columns for label and <input>)

OO and Ahh! Object Oriented PHP <div1>

PHP code for Form_Input class

Form_Input class (cont’d.)

OO and Ahh! Object Oriented PHP <div1>

Application using Form_Input PHP

OO and Ahh! Object Oriented PHP <div1>

Application using Form_Input - HTML

OO and Ahh! Object Oriented PHP <div1>

Customer Input Form – Rendered in FF

OO and Ahh! Object Oriented PHP <div1>

IBM i Toolkit

• Toolkit has two components
• XML Service

• Created by IBM to provision IBM i resources for other
platform development

• Written in RPG, CL and DB2 stored procedures

• PHP classes that “wrap” payload of XML Service
• Built on an Object Oriented model of PHP
• Use of PHP objects does not require OO knowledge

(black box)

38

OO and Ahh! Object Oriented PHP <div1>

Using the IBM i Toolkit
 Need to include the source code (i.e., class definitions) for

the toolkit
 Two class files exist:

 ToolkitService.php
• Run CL commands
• Call IBM i programs (RPG, CL, etc. – any *PGM object)

 iToolkitService.php
• Access to native IBM i objects
• Spool files, Data queues, User spaces, System Values, Job Logs, Object

Lists
 Use require_once to access Toolkit Classes:

• require_once 'ToolkitService.php';
• require_once 'iToolkitService.php';

 Documentation is in the Zend Server for IBM i User Guide:
http://files.zend.com/help/Zend-Server-6-IBMi/zend-server.htm#php_toolkit_xml_service_functions.htm

39

OO and Ahh! Object Oriented PHP <div1>40

Running CL Commands from PHP
• Create the toolkit object using the singleton design pattern

• In ToolkitService class, the getInstance method returns an object
• Cannot use new ToolkitService with singleton class

OO and Ahh! Object Oriented PHP <div1>41

Examples:
CLInteractiveCommand() and ClCommandWithOutput()

 CLInteractiveCommand:

 CLCommandWithOutput:

| 41

SUMMARY...

Thanks for attending!

OO and Ahh! Object Oriented PHP <div1>

Summary

 OO = encapsulation of data and related functionality
 Class definitions

 templates for instantiating objects,
 each object has its own data space.

 Object Instantiation
 new keyword

 Object member access operator (->)
 $this : access internal members within a class
 Applications: bring class definitions in using

require_once()

OO and Ahh! Object Oriented PHP <div1>

Summary (cont’d.)

 Member visibility - public and private
 public is default
 private is better

 Getter and Setter methods
 control access to object’s data

 Constructor method (__construct)
 object initialization

 Exception handling,
 PHP's built-in class: Exception
 throw new Exception
 try / catch

OO and Ahh! Object Oriented PHP <div1>

More Information
 iPro Developer article on OO PHP

by John Valance:
 http://tinyurl.com/oophp-JV1
 April 2013 issue

 PHP.net:
 http://php.net/manual/en/language.oop5.php
 www.php.net/manual/en/class.exception.php

 Contact John Valance :
 johnv@div1sys.com
 802-355-4024
 http://www.div1sys.com

